Suppr超能文献

基于潜在类别加速风险模型的环道事故持续时间研究。

Study on ring-road incident duration based on latent class accelerated hazard model.

机构信息

School of Transportation and Civil Engineering, Nantong University, Nantong, Jiangsu, China.

College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China.

出版信息

PLoS One. 2024 Aug 12;19(8):e0308473. doi: 10.1371/journal.pone.0308473. eCollection 2024.

Abstract

Accurately estimating the duration of freeway incidents can enhance emergency management practices and reduce the likelihood of secondary incidents. To investigate the mechanisms through which key factors influence incident duration, this study sorted out the characteristics and variables of the incident duration on a special freeway in Zhejiang Province, that is, the ring road, and developed a latent class accelerated hazard model. Heterogeneity was incorporated into the model. Three distributions (Weibull, Log-normal, and Log-logistic) were compared, and the Log-logistic distribution exhibited superior performance. The analysis revealed two distinct latent classes: Latent Class 1 and Class 2, had class membership probability of 0.53 and 0.47, respectively, with a total of 11 variables being statistically significant at the 0.05 significance level. It is worth noting that, some neglected explanatory variables are discussed in depth in this study. For example, the mechanism of which specific lane is closed has an impact on the incident duration, rather than a general discussion of the number of lane closures. Furthermore, the way in which the driver involved in the incident reports to the police has a significant impact on the duration of incidents. Notably, potential heterogeneity and its influencing mechanism are captured in the model. Additionally, by predicting class membership using posterior probabilities, it was determined that most data points were more likely to belong to Class 1, and the incident duration primarily ranged between 0 and 60 minutes. These findings are helpful to reduce the duration of incidents on ring-roads and freeways in China, and provide theoretical support for the formulation of freeway incident management and treatment policies.

摘要

准确估计高速公路事件的持续时间可以增强应急管理实践,并降低二次事件发生的可能性。为了研究关键因素影响事件持续时间的机制,本研究梳理了浙江省特殊高速公路(即环线)事件持续时间的特征和变量,并开发了潜在类别加速风险模型。模型中纳入了异质性。比较了三种分布(Weibull、对数正态和对数逻辑),结果表明对数逻辑分布表现最佳。分析揭示了两个不同的潜在类别:潜在类别 1 和类别 2,其类别成员概率分别为 0.53 和 0.47,共有 11 个变量在 0.05 显著水平下具有统计学意义。值得注意的是,本研究深入讨论了一些被忽视的解释变量。例如,具体关闭哪条车道的机制对事件持续时间有影响,而不是一般讨论关闭的车道数量。此外,涉及事故的驾驶员向警方报告的方式对事故持续时间有重大影响。值得注意的是,模型中捕捉到了潜在的异质性及其影响机制。此外,通过使用后验概率预测类别成员,确定大多数数据点更有可能属于类别 1,事件持续时间主要在 0 到 60 分钟之间。这些发现有助于减少中国环线和高速公路上的事故持续时间,并为制定高速公路事故管理和处理政策提供理论支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f391/11318924/6f75b3e1a442/pone.0308473.g001.jpg

相似文献

1
Study on ring-road incident duration based on latent class accelerated hazard model.
PLoS One. 2024 Aug 12;19(8):e0308473. doi: 10.1371/journal.pone.0308473. eCollection 2024.
2
3
Hazard based models for freeway traffic incident duration.
Accid Anal Prev. 2013 Mar;52:171-81. doi: 10.1016/j.aap.2012.12.037. Epub 2013 Jan 16.
4
Incident duration modeling using flexible parametric hazard-based models.
Comput Intell Neurosci. 2014;2014:723427. doi: 10.1155/2014/723427. Epub 2014 Nov 4.
6
Evaluating the impact of Road Rangers in preventing secondary crashes.
Accid Anal Prev. 2021 Jun;156:106129. doi: 10.1016/j.aap.2021.106129. Epub 2021 Apr 29.
7
Modelling total duration of traffic incidents including incident detection and recovery time.
Accid Anal Prev. 2014 Oct;71:296-305. doi: 10.1016/j.aap.2014.06.006. Epub 2014 Jun 27.
8
Competing risks mixture model for traffic incident duration prediction.
Accid Anal Prev. 2015 Feb;75:192-201. doi: 10.1016/j.aap.2014.11.023. Epub 2014 Dec 6.
10
An analysis of the severity and incident duration of truck-involved freeway accidents.
Accid Anal Prev. 1987 Oct;19(5):375-95. doi: 10.1016/0001-4575(87)90023-6.

本文引用的文献

1
2
A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations.
Accid Anal Prev. 2016 Jun;91:114-26. doi: 10.1016/j.aap.2016.03.001. Epub 2016 Mar 11.
3
Exploring the influential factors in incident clearance time: Disentangling causation from self-selection bias.
Accid Anal Prev. 2015 Dec;85:58-65. doi: 10.1016/j.aap.2015.08.024. Epub 2015 Sep 12.
4
Weighted estimation of the accelerated failure time model in the presence of dependent censoring.
PLoS One. 2015 Apr 24;10(4):e0124381. doi: 10.1371/journal.pone.0124381. eCollection 2015.
5
Competing risks mixture model for traffic incident duration prediction.
Accid Anal Prev. 2015 Feb;75:192-201. doi: 10.1016/j.aap.2014.11.023. Epub 2014 Dec 6.
6
Hazard based models for freeway traffic incident duration.
Accid Anal Prev. 2013 Mar;52:171-81. doi: 10.1016/j.aap.2012.12.037. Epub 2013 Jan 16.
7
Development of an accident duration prediction model on the Korean Freeway Systems.
Accid Anal Prev. 2010 Jan;42(1):282-9. doi: 10.1016/j.aap.2009.08.005. Epub 2009 Aug 28.
8
Estimation of incident clearance times using Bayesian Networks approach.
Accid Anal Prev. 2006 May;38(3):542-55. doi: 10.1016/j.aap.2005.11.012. Epub 2006 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验