Suppr超能文献

用于交通事故持续时间预测的竞争风险混合模型。

Competing risks mixture model for traffic incident duration prediction.

作者信息

Li Ruimin, Pereira Francisco C, Ben-Akiva Moshe E

机构信息

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 0219, USA; Department of Civil Engineering, Tsinghua University, Beijing, 100084, China.

Singapore-MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #09-02 CREATE Tower, Singapore 138602, Singapore.

出版信息

Accid Anal Prev. 2015 Feb;75:192-201. doi: 10.1016/j.aap.2014.11.023. Epub 2014 Dec 6.

Abstract

Traffic incident duration is known to result from a combination of multiple factors, including covariates such as spatial and temporal characteristics, traffic conditions, and existence of secondary accidents but also the clearance method itself. In this paper, a competing risks mixture model is used to investigate the influence of clearance methods and various covariates on the duration of traffic incidents and predict traffic incident duration. The proposed mixture model considers the uncertainty in any of five clearance methods that occurred. The probability of the clearance method is specified in the mixture by using a multinomial logistic model. Three candidate distributions, namely, generalized gamma, Weibull, and log-logistic are tested to determine the most appropriate probability density function of the parametric survival analysis model. The unobserved heterogeneity is also incorporated into the mixture model in a way that allows parameters to vary across observations based on the three candidate distributions. The methods are illustrated with incident data from Singaporean expressways from January 2010 to December 2011. Regression analysis reveals that the probability of different clearance methods and the duration of traffic incidents are both significantly affected by various factors, such as traffic conditions and incident characteristics. Results show that the proposed mixture model is better than the traditional accelerated failure time model, and it predicts traffic incident duration with reasonable accuracy, as shown by the mean average percent error.

摘要

交通事故持续时间是由多种因素共同作用导致的,这些因素包括诸如空间和时间特征、交通状况以及二次事故的存在等协变量,还有清障方法本身。本文采用竞争风险混合模型来研究清障方法和各种协变量对交通事故持续时间的影响,并预测交通事故持续时间。所提出的混合模型考虑了发生的五种清障方法中任何一种的不确定性。通过使用多项逻辑模型在混合模型中指定清障方法的概率。测试了三种候选分布,即广义伽马分布、威布尔分布和对数逻辑分布,以确定参数生存分析模型最合适的概率密度函数。未观察到的异质性也以一种允许参数根据三种候选分布在不同观测值之间变化的方式纳入混合模型。使用2010年1月至2011年12月新加坡高速公路的事故数据对这些方法进行了说明。回归分析表明,不同清障方法的概率和交通事故持续时间都受到交通状况和事故特征等各种因素的显著影响。结果表明,所提出的混合模型优于传统的加速失效时间模型,并且如平均平均百分比误差所示,它能以合理的精度预测交通事故持续时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验