Zhui Li, Fenghe Li, Xuehu Wang, Qining Fu, Wei Ren
Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
J Med Internet Res. 2024 Aug 1;26:e60083. doi: 10.2196/60083.
This viewpoint article first explores the ethical challenges associated with the future application of large language models (LLMs) in the context of medical education. These challenges include not only ethical concerns related to the development of LLMs, such as artificial intelligence (AI) hallucinations, information bias, privacy and data risks, and deficiencies in terms of transparency and interpretability but also issues concerning the application of LLMs, including deficiencies in emotional intelligence, educational inequities, problems with academic integrity, and questions of responsibility and copyright ownership. This paper then analyzes existing AI-related legal and ethical frameworks and highlights their limitations with regard to the application of LLMs in the context of medical education. To ensure that LLMs are integrated in a responsible and safe manner, the authors recommend the development of a unified ethical framework that is specifically tailored for LLMs in this field. This framework should be based on 8 fundamental principles: quality control and supervision mechanisms; privacy and data protection; transparency and interpretability; fairness and equal treatment; academic integrity and moral norms; accountability and traceability; protection and respect for intellectual property; and the promotion of educational research and innovation. The authors further discuss specific measures that can be taken to implement these principles, thereby laying a solid foundation for the development of a comprehensive and actionable ethical framework. Such a unified ethical framework based on these 8 fundamental principles can provide clear guidance and support for the application of LLMs in the context of medical education. This approach can help establish a balance between technological advancement and ethical safeguards, thereby ensuring that medical education can progress without compromising the principles of fairness, justice, or patient safety and establishing a more equitable, safer, and more efficient environment for medical education.
这篇观点文章首先探讨了在医学教育背景下,大语言模型(LLMs)未来应用所带来的伦理挑战。这些挑战不仅包括与大语言模型开发相关的伦理问题,如人工智能(AI)幻觉、信息偏差、隐私和数据风险,以及透明度和可解释性方面的不足,还包括大语言模型应用方面的问题,如情商不足、教育不公平、学术诚信问题,以及责任和版权归属问题。然后,本文分析了现有的与人工智能相关的法律和伦理框架,并强调了它们在医学教育背景下对大语言模型应用的局限性。为确保大语言模型以负责任和安全的方式融入,作者建议制定一个专门针对该领域大语言模型的统一伦理框架。这个框架应基于八项基本原则:质量控制和监督机制;隐私和数据保护;透明度和可解释性;公平和平等待遇;学术诚信和道德规范;问责制和可追溯性;保护和尊重知识产权;以及促进教育研究和创新。作者进一步讨论了为实施这些原则可采取的具体措施,从而为制定一个全面且可操作的伦理框架奠定坚实基础。这样一个基于这八项基本原则的统一伦理框架,可以为大语言模型在医学教育背景下的应用提供明确的指导和支持。这种方法有助于在技术进步和伦理保障之间建立平衡,从而确保医学教育能够在不损害公平、正义或患者安全原则的情况下取得进展,并为医学教育建立一个更公平、更安全、更高效的环境。
J Med Internet Res. 2024-8-1
Lancet Digit Health. 2024-6
Asia Pac J Ophthalmol (Phila). 2024
Br J Dermatol. 2024-5-17
JMIR Med Inform. 2024-5-10
Adv Med Educ Pract. 2025-8-15
Bioengineering (Basel). 2025-6-10
Front Endocrinol (Lausanne). 2025-1-14
J Med Internet Res. 2024-12-27
Front Digit Health. 2024-11-5
IEEE Trans Vis Comput Graph. 2025-8
JMIR Med Educ. 2023-12-28