Suppr超能文献

降解驱动的植被-土壤-微生物相互作用改变了毛竹林的微生物碳利用效率。

Degradation-driven vegetation-soil-microbe interactions alter microbial carbon use efficiency in Moso bamboo forests.

机构信息

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou 311300, China.

Taizhou Forestry Technology Promotion Center, Taizhou 318000, China.

出版信息

Sci Total Environ. 2024 Nov 15;951:175435. doi: 10.1016/j.scitotenv.2024.175435. Epub 2024 Aug 10.

Abstract

Microbial carbon utilization efficiency (CUE) is a crucial indicator for evaluating the efficiency of soil carbon sequestration and transformation, which is applied to quantify the proportion of soil carbon extracted by microbes for anabolism (growth) and catabolism (respiration). Previous studies have shown that the degradation of Moso bamboo forests (Phyllostachys edulis) destroyed the aboveground bamboo structure, reduced vegetation carbon storage, and weakened ecosystem carbon sequestration capacity. Interestingly, soil organic carbon stocks are gradually increasing. However, the mechanism by which degradation-induced changes in soil and vegetation characteristics affect microbial CUE and drive soil carbon sequestration remains unclear. Here we selected four stands with the same origin but different degradation years (intensive management, CK; 2 years' degradation, DM1; 6 years' degradation, DM2; and 10 years' degradation, DM3) based on the local management profiles. The principle of space-for-time substitution was used to investigate the changes in microbial CUE along a degradation time and to further identify the controlling biotic and abiotic factors. Our finding showed that microbial CUE increased by 12.27 %, 31.01 %, and 55.95 %, respectively, compared with CK; whereas microbial biomass turnover time decreased from 23.99 ± 1.11 to 17.16 ± 1.20 days. Promoting microbial growth was the main pathway to enhance microbial CUE. Massive inputs of vegetative carbon replenished soil carbon substrate content, and altered microbial communities and life history strategy, which in turn promoted microbial growth and increased microbial CUE. These findings provide theoretical support for the interactions between carbon dynamics and microbial physiology in degraded bamboo forests, and reinforce the importance of vegetation and microbial properties and soil carbon substrates in predicting microbial CUE.

摘要

微生物碳利用效率(CUE)是评估土壤碳固存和转化效率的关键指标,用于量化微生物提取土壤碳用于合成代谢(生长)和分解代谢(呼吸)的比例。先前的研究表明,毛竹林(Phyllostachys edulis)的退化破坏了地上竹结构,减少了植被碳储存,削弱了生态系统的碳固存能力。有趣的是,土壤有机碳储量逐渐增加。然而,退化引起的土壤和植被特征变化如何影响微生物 CUE 并驱动土壤碳固存的机制尚不清楚。在这里,我们根据当地的管理概况,选择了四个起源相同但退化年限不同的林分(集约管理,CK;2 年退化,DM1;6 年退化,DM2;10 年退化,DM3)。利用时空替代原则,研究了退化时间序列上微生物 CUE 的变化,并进一步确定了控制生物和非生物因素。我们的发现表明,与 CK 相比,微生物 CUE 分别增加了 12.27%、31.01%和 55.95%;而微生物生物量周转时间从 23.99±1.11 天缩短至 17.16±1.20 天。促进微生物生长是提高微生物 CUE 的主要途径。大量的植被碳输入补充了土壤碳底物的含量,并改变了微生物群落和生活史策略,从而促进了微生物的生长并增加了微生物 CUE。这些发现为退化竹林中碳动态与微生物生理学之间的相互作用提供了理论支持,并强调了植被和微生物特性以及土壤碳底物在预测微生物 CUE 中的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验