Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
J Neurosci. 2024 Sep 11;44(37):e0675242024. doi: 10.1523/JNEUROSCI.0675-24.2024.
Neuronal excitatory synapses are primarily located on small dendritic protrusions called spines. During synaptic plasticity underlying learning and memory, Ca influx through postsynaptic NMDA-type glutamate receptors (NMDARs) initiates signaling pathways that coordinate changes in dendritic spine structure and synaptic function. During long-term potentiation (LTP), high levels of NMDAR Ca influx promote increases in both synaptic strength and dendritic spine size through activation of Ca-dependent protein kinases. In contrast, during long-term depression (LTD), low levels of NMDAR Ca influx promote decreased synaptic strength and spine shrinkage and elimination through activation of the Ca-dependent protein phosphatase calcineurin (CaN), which is anchored at synapses via the scaffold protein A-kinase anchoring protein (AKAP)150. In Alzheimer's disease (AD), the pathological agent amyloid-β (Aβ) may impair learning and memory through biasing NMDAR Ca signaling pathways toward LTD and spine elimination. By employing AKAP150 knock-in mice of both sexes with a mutation that disrupts CaN anchoring to AKAP150, we revealed that local, postsynaptic AKAP-CaN-LTD signaling was required for Aβ-mediated impairment of NMDAR synaptic Ca influx, inhibition of LTP, and dendritic spine loss. Additionally, we found that Aβ acutely engages AKAP-CaN signaling through activation of G-protein-coupled metabotropic glutamate receptor 1 (mGluR1) leading to dephosphorylation of NMDAR GluN2B subunits, which decreases Ca influx to favor LTD over LTP, and cofilin, which promotes F-actin severing to destabilize dendritic spines. These findings reveal a novel interplay between NMDAR and mGluR1 signaling that converges on AKAP-anchored CaN to coordinate dephosphorylation of postsynaptic substrates linked to multiple aspects of Aβ-mediated synaptic dysfunction.
神经元兴奋性突触主要位于称为棘突的小树突突起上。在学习和记忆的突触可塑性过程中,通过突触后 NMDA 型谷氨酸受体 (NMDAR) 的 Ca 内流启动信号通路,协调树突棘结构和突触功能的变化。在长时程增强 (LTP) 期间,通过激活 Ca 依赖性蛋白激酶,NMDAR Ca 内流的高水平促进突触强度和树突棘大小的增加。相比之下,在长时程抑制 (LTD) 期间,NMDAR Ca 内流的低水平通过激活 Ca 依赖性蛋白磷酸酶钙调神经磷酸酶 (CaN) 促进突触强度的降低和棘突收缩和消除,钙调神经磷酸酶通过支架蛋白 A 激酶锚定蛋白 (AKAP)150 锚定在突触上。在阿尔茨海默病 (AD) 中,病理因子淀粉样蛋白-β (Aβ) 可能通过使 NMDAR Ca 信号通路偏向 LTD 和棘突消除,从而损害学习和记忆。通过使用 AKAP150 敲入雄性和雌性小鼠,这些小鼠的突变破坏了 CaN 与 AKAP150 的锚定,我们揭示了局部突触后 AKAP-CaN-LTD 信号对于 Aβ 介导的 NMDAR 突触 Ca 内流抑制、LTP 抑制和树突棘丢失是必需的。此外,我们发现 Aβ 通过激活 G 蛋白偶联代谢型谷氨酸受体 1 (mGluR1) 急性参与 AKAP-CaN 信号,导致 NMDAR GluN2B 亚基去磷酸化,这降低了 Ca 内流,有利于 LTD 而不是 LTP,以及肌动蛋白结合蛋白 cofilin,它促进 F-肌动蛋白的切割以破坏树突棘的稳定性。这些发现揭示了 NMDAR 和 mGluR1 信号之间的一种新相互作用,这种相互作用集中在 AKAP 锚定的 CaN 上,以协调与 Aβ 介导的突触功能障碍的多个方面相关的突触后底物的去磷酸化。