Suppr超能文献

可学习的数字信号处理:光纤通信线性度补偿的新基准。

Learnable digital signal processing: a new benchmark of linearity compensation for optical fiber communications.

作者信息

Niu Zekun, Yang Hang, Li Lyu, Shi Minghui, Xu Guozhi, Hu Weisheng, Yi Lilin

机构信息

State Key Lab of Advanced Optical Communication Systems and Networks, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.

出版信息

Light Sci Appl. 2024 Aug 13;13(1):188. doi: 10.1038/s41377-024-01556-5.

Abstract

The surge in interest regarding the next generation of optical fiber transmission has stimulated the development of digital signal processing (DSP) schemes that are highly cost-effective with both high performance and low complexity. As benchmarks for nonlinear compensation methods, however, traditional DSP designed with block-by-block modules for linear compensations, could exhibit residual linear effects after compensation, limiting the nonlinear compensation performance. Here we propose a high-efficient design thought for DSP based on the learnable perspectivity, called learnable DSP (LDSP). LDSP reuses the traditional DSP modules, regarding the whole DSP as a deep learning framework and optimizing the DSP parameters adaptively based on backpropagation algorithm from a global scale. This method not only establishes new standards in linear DSP performance but also serves as a critical benchmark for nonlinear DSP designs. In comparison to traditional DSP with hyperparameter optimization, a notable enhancement of approximately 1.21 dB in the Q factor for 400 Gb/s signal after 1600 km fiber transmission is experimentally demonstrated by combining LDSP and perturbation-based nonlinear compensation algorithm. Benefiting from the learnable model, LDSP can learn the best configuration adaptively with low complexity, reducing dependence on initial parameters. The proposed approach implements a symbol-rate DSP with a small bit error rate (BER) cost in exchange for a 48% complexity reduction compared to the conventional 2 samples/symbol processing. We believe that LDSP represents a new and highly efficient paradigm for DSP design, which is poised to attract considerable attention across various domains of optical communications.

摘要

对下一代光纤传输兴趣的激增刺激了数字信号处理(DSP)方案的发展,这些方案具有高性能和低复杂度且极具成本效益。然而,作为非线性补偿方法的基准,传统的采用逐块模块进行线性补偿设计的DSP,在补偿后可能会出现残余线性效应,限制了非线性补偿性能。在此,我们提出一种基于可学习视角的DSP高效设计思路,称为可学习DSP(LDSP)。LDSP复用传统DSP模块,将整个DSP视为一个深度学习框架,并基于反向传播算法从全局尺度自适应地优化DSP参数。该方法不仅在线性DSP性能方面建立了新标准,也为非线性DSP设计提供了关键基准。与具有超参数优化的传统DSP相比,通过将LDSP与基于微扰的非线性补偿算法相结合,实验证明在1600 km光纤传输后,400 Gb/s信号的Q因子显著提高了约1.21 dB。受益于可学习模型,LDSP能够以低复杂度自适应地学习最佳配置,减少对初始参数的依赖。所提出的方法实现了一种符号率DSP,其误码率(BER)成本较低,与传统的2样本/符号处理相比,复杂度降低了48%。我们相信,LDSP代表了一种新的高效DSP设计范式,有望在光通信的各个领域引起广泛关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8f1/11319808/d214d97ca0d6/41377_2024_1556_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验