Suppr超能文献

基于视频的奶牛行为识别新数据集。

A new dataset for video-based cow behavior recognition.

机构信息

College of Electronic Information Engineering, Inner Mongolia University, College Road No. 235, Hohhot, 010021, Inner Mongolia Autonomous Region, China.

出版信息

Sci Rep. 2024 Aug 12;14(1):18702. doi: 10.1038/s41598-024-65953-x.

Abstract

A new video based multi behavior dataset for cows, CBVD-5, is introduced in this paper. The dataset includes five cow behaviors: standing, lying down, foraging,rumination and drinking. The dataset comprises 107 cows from the entire barn, maintaining an 80% stocking density. Monitoring occurred over 96 h for these 20-month-old cows, considering varying light conditions and nighttime data to ensure standardization and inclusivity.The dataset consists of ranch monitoring footage collected by seven cameras, including 687 video segment samples and 206,100 image samples, covering five daily behaviors of cows. The data collection process entailed the deployment of cameras, hard drives, software, and servers for storage. Data annotation was conducted using the VIA web tool, leveraging the video expertise of pertinent professionals. The annotation coordinates and category labels of each individual cow in the image, as well as the generated configuration file, are also saved in the dataset. With this dataset,we propose a slowfast cow multi behavior recognition model based on video sequences as the baseline evaluation model. The experimental results show that the model can effectively learn corresponding category labels from the behavior type data of the dataset, with an error rate of 21.28% on the test set. In addition to cow behavior recognition, the dataset can also be used for cow target detection, and so on.The CBVD-5 dataset significantly influences dairy cow behavior recognition, advancing research, enriching data resources, standardizing datasets, enhancing dairy cow health and welfare monitoring, and fostering agricultural intelligence development. Additionally, it serves educational and training needs, supporting research and practical applications in related fields. The dataset will be made freely available to researchers world-wide.

摘要

本文介绍了一个新的基于视频的奶牛多行为数据集 CBVD-5。该数据集包含五种奶牛行为:站立、躺下、觅食、反刍和饮水。该数据集由整个牛棚的 107 头奶牛组成,保持 80%的存栏密度。对这些 20 月龄的奶牛进行了 96 小时的监测,考虑到不同的光照条件和夜间数据,以确保标准化和包容性。数据集由七台摄像机采集的牧场监测视频组成,包括 687 个视频片段样本和 206100 个图像样本,涵盖了奶牛的五种日常行为。数据采集过程涉及到摄像机、硬盘、软件和服务器的部署,用于存储。使用 VIA 网络工具进行数据标注,利用相关专业人员的视频专业知识。还保存了每个图像中个体奶牛的标注坐标和类别标签,以及生成的配置文件。我们使用这个数据集提出了一个基于视频序列的 slowfast 奶牛多行为识别模型作为基线评估模型。实验结果表明,该模型可以从数据集的行为类型数据中有效地学习到相应的类别标签,在测试集上的错误率为 21.28%。除了奶牛行为识别,该数据集还可用于奶牛目标检测等。CBVD-5 数据集对奶牛行为识别具有重要影响,推动了研究进展,丰富了数据资源,规范了数据集,增强了奶牛健康和福利监测,促进了农业智能发展。此外,它还满足了教育和培训的需求,为相关领域的研究和实际应用提供了支持。该数据集将向全球研究人员免费开放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ac/11319619/92cfff77a3cd/41598_2024_65953_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验