Suppr超能文献

使用人工智能生成图像进行乳腺钼靶模拟训练:一项多读者研究。

Simulation training in mammography with AI-generated images: a multireader study.

作者信息

Rangarajan Krithika, Manivannan Veeramakali Vignesh, Singh Harpinder, Gupta Amit, Maheshwari Hrithik, Gogoi Rishparn, Gogoi Debashish, Das Rupam Jyoti, Hari Smriti, Vyas Surabhi, Sharma Raju, Pandey Shivam, Seenu V, Banerjee Subhashis, Namboodiri Vinay, Arora Chetan

机构信息

AIIMS New Delhi, Delhi, India.

IIT Delhi, Delhi, India.

出版信息

Eur Radiol. 2025 Feb;35(2):562-571. doi: 10.1007/s00330-024-11005-x. Epub 2024 Aug 12.

Abstract

OBJECTIVES

The interpretation of mammograms requires many years of training and experience. Currently, training in mammography, like the rest of diagnostic radiology, is through institutional libraries, books, and experience accumulated over time. We explore whether artificial Intelligence (AI)-generated images can help in simulation education and result in measurable improvement in performance of residents in training.

METHODS

We developed a generative adversarial network (GAN) that was capable of generating mammography images with varying characteristics, such as size and density, and created a tool with which a user could control these characteristics. The tool allowed the user (a radiology resident) to realistically insert cancers within different regions of the mammogram. We then provided this tool to residents in training. Residents were randomized into a practice group and a non-practice group, and the difference in performance before and after practice with such a tool (in comparison to no intervention in the non-practice group) was assessed.

RESULTS

Fifty residents participated in the study, 27 underwent simulation training, and 23 did not. There was a significant improvement in the sensitivity (7.43 percent, significant at p-value = 0.03), negative predictive value (5.05 percent, significant at p-value = 0.008) and accuracy (6.49 percent, significant at p-value = 0.01) among residents in the detection of cancer on mammograms after simulation training.

CONCLUSION

Our study shows the value of simulation training in diagnostic radiology and explores the potential of generative AI to enable such simulation training.

CLINICAL RELEVANCE STATEMENT

Using generative artificial intelligence, simulation training modules can be developed that can help residents in training by providing them with a visual impression of a variety of different cases.

KEY POINTS

Generative networks can produce diagnostic imaging with specific characteristics, potentially useful for training residents. Training with generating images improved residents' mammographic diagnostic abilities. Development of a game-like interface that exploits these networks can result in improvement in performance over a short training period.

摘要

目的

乳腺钼靶X线片的解读需要多年的培训和经验。目前,乳腺钼靶摄影培训与其他诊断放射学一样,是通过机构图书馆、书籍以及长期积累的经验来进行的。我们探讨人工智能(AI)生成的图像是否有助于模拟教育,并能否使培训中的住院医师的表现得到可衡量的提升。

方法

我们开发了一种生成对抗网络(GAN),它能够生成具有不同特征(如大小和密度)的乳腺钼靶图像,并创建了一个工具,用户可以通过该工具控制这些特征。该工具允许用户(放射科住院医师)在乳腺钼靶的不同区域逼真地插入癌症。然后我们将此工具提供给正在接受培训的住院医师。住院医师被随机分为练习组和非练习组,并评估使用该工具练习前后(与非练习组不进行干预相比)表现的差异。

结果

50名住院医师参与了该研究,27名接受了模拟训练,23名未接受。模拟训练后,住院医师在乳腺钼靶片上检测癌症的敏感性(提高7.43%,p值=0.03时具有显著性)、阴性预测值(提高5.05%,p值=0.008时具有显著性)和准确性(提高6.49%,p值=0.01时具有显著性)均有显著提高。

结论

我们的研究显示了模拟训练在诊断放射学中的价值,并探索了生成式人工智能实现这种模拟训练的潜力。

临床相关性声明

利用生成式人工智能,可以开发模拟训练模块,通过为正在接受培训的住院医师提供各种不同病例的视觉印象来帮助他们。

关键点

生成网络可以产生具有特定特征的诊断成像,可能对培训住院医师有用。使用生成图像进行训练提高了住院医师的乳腺钼靶诊断能力。开发利用这些网络的类似游戏的界面可以在短时间训练内提高表现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验