Saha Biswajit, Boykin Jacob, Chung Hoyong
Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States.
J Am Chem Soc. 2024 Aug 21;146(33):23467-23475. doi: 10.1021/jacs.4c06877. Epub 2024 Aug 12.
Developing tough adhesives with superior strength and ductility is challenging yet highly sought-after. In this work, we address a strategic approach to achieving diverse toughness and performance by meticulously harnessing weak electrostatic interactions. Two polyzwitterions (PZIs), derived from sulfobetaine methacrylate (SBMA), of different topologies: bottlebrush (BB-PSBMA) and linear (L-PSBMA), were designed. BB-PSBMA was synthesized using a rational "grafting-from" strategy, while L-PSBMA was prepared via atom transfer radical polymerization. Despite their architectural disparities, both PZIs demonstrated a comparable substantial lap-shear adhesion strength of ∼0.4 MPa. Intriguingly, the introduction of NaCl during adhesive preparation revealed contrasting adhesion behaviors. BB-PSBMA transitioned from a strong-brittle to strong-ductile adhesive upon the addition of 70 mM NaCl, evidenced by a 77.4% increase in the work of debonding, i.e., toughness. Further increases in NaCl concentration continued to impart the ductile properties to BB-PSBMA. Conversely, L-PSBMA adhesive predominantly transformed from strong-brittle to ductile regardless of the salt content. We propose a synergistic mechanism involving viscosity-governed optimal adhesion-cohesion balance and mechanical energy dissipation through sacrificial electrostatic association to elucidate the strong and ductile nature of the BB-PSBMA adhesive at 70 mM NaCl. Our findings emphasize the significance of precise control over architecture and salt concentration is necessary in constructing adhesives with enhanced toughness and performance.
开发具有卓越强度和延展性的强力粘合剂具有挑战性,但却备受追捧。在这项工作中,我们提出了一种战略方法,即通过精心利用弱静电相互作用来实现多种韧性和性能。设计了两种不同拓扑结构的聚两性离子(PZIs),它们由甲基丙烯酸磺酸甜菜碱(SBMA)衍生而来:刷状(BB-PSBMA)和线性(L-PSBMA)。BB-PSBMA采用合理的“接枝从”策略合成,而L-PSBMA则通过原子转移自由基聚合制备。尽管它们的结构存在差异,但两种PZIs都表现出相当可观的搭接剪切粘附强度,约为0.4 MPa。有趣的是,在粘合剂制备过程中引入NaCl揭示了截然不同的粘附行为。添加70 mM NaCl后,BB-PSBMA从强脆性粘合剂转变为强韧性粘合剂,脱粘功(即韧性)增加了77.4%,这证明了这一点。继续增加NaCl浓度会使BB-PSBMA继续保持韧性。相反,无论盐含量如何,L-PSBMA粘合剂主要从强脆性转变为韧性。我们提出了一种协同机制,涉及粘度控制的最佳粘附-内聚平衡和通过牺牲性静电缔合的机械能耗散,以阐明70 mM NaCl下BB-PSBMA粘合剂的强韧性。我们的研究结果强调了精确控制结构和盐浓度对于构建具有增强韧性和性能的粘合剂的重要性。