Eliwa Essam M, Bedair Ahmed H, Djukic Jean-Pierre
Laboratoire de Chimie et Systémique Organométallique - Institut de Chimie de Strasbourg UMR7177, CNRS- Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France.
Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
Org Biomol Chem. 2024 Aug 28;22(34):6860-6904. doi: 10.1039/d4ob01044b.
Organofluorines have a broad range of industrial applications, such as pharmaceuticals, liquid crystal displays (LCDs), solar cells, textiles, and construction coatings, and are used in peptidomimetics, surfactants, refrigerants, anesthetics, and agrochemicals. Among them are versatile monofluoroalkenes that play a crucial role in medicinal and synthetic chemistry. The synthetic strategies for this class of molecules are limited, and prior efforts frequently suffered from poor atom- and step-economies. As a surrogate pathway for traditional cross-coupling transformations, transition metal (TM)-catalyzed C-H direct α-fluoroalkenylation overcomes these obstacles and provides straightforward techniques to access monofluoroalkenes. Nevertheless, substrate scope is still a challenge for catalysis, where -bromofluoroalkene synthons are applicable with electronically biased substrates such as azoles, while -difluoroalkene-based strategies are limited to substrates containing N-based directing groups. Herein, we review the cutting-edge fluoroalkenylation research for direct synthesis of monofluoroalkenes achieved during the last decade (2013-2023). This review is divided into two main parts: the first part discusses TM-catalyzed direct α-fluoroalkenylation the merging of C-H activation and C(sp)-Br cleavage strategies using -bromofluoroalkenes, and the second part describes the same reaction, albeit with C(sp)-F cleavage of highly explored -difluoroolefins. Our review surveys all previously reported monofluoroalkenes in this research area, including their preparation techniques, stereoselectivity, and yield percentages. Furthermore, optimal conditions, reactant scope, mechanistic investigations, synthetic applications, benefits, and drawbacks of each presented methodology are critically discussed.
有机氟化物在众多工业领域有着广泛应用,如制药、液晶显示器(LCD)、太阳能电池、纺织品及建筑涂料等,还用于拟肽、表面活性剂、制冷剂、麻醉剂及农用化学品中。其中,多功能单氟烯烃在药物化学和合成化学中起着关键作用。这类分子的合成策略有限,以往的方法常常存在原子经济性和步骤经济性差的问题。作为传统交叉偶联转化的替代途径,过渡金属(TM)催化的C-H直接α-氟烯基化克服了这些障碍,并提供了获取单氟烯烃的直接方法。然而,底物范围仍是催化反应面临的挑战,其中溴氟烯烃合成子适用于电子偏向性底物,如唑类,而基于二氟烯烃的策略则仅限于含有氮基导向基团的底物。在此,我们综述了过去十年(2013 - 2023年)间单氟烯烃直接合成方面的前沿氟烯基化研究。本综述分为两个主要部分:第一部分讨论TM催化的直接α-氟烯基化——使用溴氟烯烃将C-H活化与C(sp)-Br裂解策略相结合;第二部分描述相同的反应,不过是利用研究较多的二氟烯烃的C(sp)-F裂解。我们的综述涵盖了该研究领域所有先前报道的单氟烯烃,包括它们的制备技术、立体选择性和产率百分比。此外,还对每种方法的最佳条件、反应物范围、机理研究、合成应用、优点和缺点进行了批判性讨论。