Wang Jia-Xin, Zhang Xu, Jiang Chenghao, Zhang Teng-Fei, Pei Jiyan, Zhou Wei, Yildirim Taner, Chen Banglin, Qian Guodong, Li Bin
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
Jiangsu Engineering Laboratory for Environmental Functional Materials School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China.
Angew Chem Int Ed Engl. 2024 Dec 16;63(51):e202411753. doi: 10.1002/anie.202411753. Epub 2024 Oct 29.
Development of highly porous and robust hydrogen-bonded organic frameworks (HOFs) for high-pressure methane and hydrogen storage remains a grand challenge due to the fragile nature of hydrogen bonds. Herein, we report a strategy of constructing the double-walled framework to target highly porous and robust HOF (ZJU-HOF-5a) for extraordinary CH and H storage. ZJU-HOF-5a features a minimized twofold interpenetration with double-walled structure, in which multiple supramolecular interactions are existed between the interpenetrated walls. This structural configuration can notably enhance the framework robustness while maintaining its high porosity, affording one of the highest gravimetric and volumetric surface areas of 3102 m g and 1976 m cm among the reported HOFs so far. ZJU-HOF-5a thus exhibits an extremely high volumetric H uptake of 43.6 g L at 77 K/100 bar and working capacity of 41.3 g L under combined swing conditions (77 K/100 bar→160 K/5 bar), and also impressive methane storage performance with a 5-100 bar working capacity of 187 (or 159) cm (STP) cm at 270 K (or 296 K), outperforming most of the reported porous organic materials. Single-crystal X-ray diffraction studies on CH-loaded ZJU-HOF-5a reveal that abundant supramolecular binding sites combined with ultrahigh porosities account for its high CH storage capacities. Combined with high stability, super-hydrophobicity, and easy recovery, ZJU-HOF-5a is placed among the most promising materials for H and CH storage applications.
由于氢键的脆弱性,开发用于高压甲烷和氢气存储的高度多孔且坚固的氢键有机框架(HOFs)仍然是一个巨大的挑战。在此,我们报告了一种构建双壁框架的策略,以制备用于卓越的CH₄和H₂存储的高度多孔且坚固的HOF(ZJU-HOF-5a)。ZJU-HOF-5a具有最小化的双壁结构双穿插,其中穿插壁之间存在多种超分子相互作用。这种结构构型可以在保持其高孔隙率的同时显著增强框架的坚固性,使其成为迄今为止报道的HOFs中具有最高重量比表面积和体积比表面积之一,分别为3102 m² g⁻¹和1976 m² cm⁻³。因此,ZJU-HOF-5a在77 K/100 bar下表现出极高的体积H₂吸收量,为43.6 g L⁻¹,在变温变压条件(77 K/100 bar→160 K/5 bar)下的工作容量为41.3 g L⁻¹,并且在270 K(或296 K)下具有令人印象深刻的甲烷存储性能,5 - 100 bar的工作容量为187(或159)cm³(STP) cm⁻³,优于大多数报道的多孔有机材料。对负载CH₄的ZJU-HOF-5a进行的单晶X射线衍射研究表明,丰富的超分子结合位点与超高孔隙率共同导致其高CH₄存储容量。结合高稳定性、超疏水性和易于回收,ZJU-HOF-5a是最有前途的H₂和CH₄存储应用材料之一。