文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于扩增子测序和培养方法的常规稻和有机稻种子内生微生物组差异的特征分析。

Characterization of differences in seed endophytic microbiome in conventional and organic rice by amplicon-based sequencing and culturing methods.

机构信息

Texas A&M AgriLife Research Center, Beaumont, Texas, USA.

Department of Plant Pathology, University of Faisalabad, Faisalabad, Pakistan.

出版信息

Microbiol Spectr. 2024 Oct 3;12(10):e0366223. doi: 10.1128/spectrum.03662-23. Epub 2024 Aug 13.


DOI:10.1128/spectrum.03662-23
PMID:39136439
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11448069/
Abstract

UNLABELLED: The seed serves as the primary source for establishing microbial populations in plants across subsequent generations, influencing plant growth and overall health. Cropping conditions, especially farming practices, can influence the composition and functionality of the seed microbiome. Very little is known about the differences in seed microbiome between organic and conventional production systems. In this study, we characterized the endophytic microbial populations in seeds of rice grown under organic and conventional management practices through culture-dependent and -independent analyses. The V4 region of 16S rRNA was used for bacterial taxa identification, and the ITS1 region was used for the identification of fungal taxa. Our results revealed significantly higher Shannon and Simpson indices for bacterial diversity in the conventional farming system, whereas the fungal diversity was higher for observed, Shannon, and Simpson indices in the organic farming system. The cultivable endophytic bacteria were isolated and identified using the full-length 16S rRNA gene. There was no difference in culturable endophytic bacterial isolates in rice seeds grown under both conventional and organic farming systems. Among 33 unique isolates tested , three bacteria- sp. ST24, sp. OR5, and sp. ST25-showed antagonistic activities against AG4, and AG11, the fungal pathogens causing seedling blight in rice. IMPORTANCE: In this paper, we studied the differences in the endophytic microbial composition of rice seeds grown in conventional and organic farming systems. Our results demonstrate a greater bacterial diversity in conventional farming, while organic farming showcases a higher fungal diversity. Additionally, our research reveals the ability of seed bacterial endophytes to inhibit the growth of three fungal pathogens responsible for causing seedling blight in rice. This study provides valuable insights into the potential use of beneficial seed microbial endophytes for developing a novel microbiome-based strategy in the management of rice diseases. Such an approach has the potential to enhance overall plant health and improve crop productivity.

摘要

未加标签:种子是在后续世代中在植物中建立微生物种群的主要来源,影响植物的生长和整体健康。种植条件,特别是耕作实践,会影响种子微生物组的组成和功能。对于有机和常规生产系统之间种子微生物组的差异,人们知之甚少。在这项研究中,我们通过依赖和独立的培养分析,描述了在有机和常规管理实践下生长的水稻种子中的内生微生物种群。使用 16S rRNA 的 V4 区域进行细菌分类群鉴定,使用 ITS1 区域进行真菌分类群鉴定。我们的结果表明,常规农业系统中细菌多样性的 Shannon 和 Simpson 指数显著较高,而有机农业系统中观察到的、Shannon 和 Simpson 指数的真菌多样性较高。使用全长 16S rRNA 基因分离和鉴定可培养的内生细菌。在常规和有机农业系统下生长的水稻种子中,可培养的内生细菌分离株没有差异。在测试的 33 个独特分离株中,三种细菌 - sp. ST24、sp. OR5 和 sp. ST25- 对引起水稻幼苗疫病的真菌病原体 AG4 和 AG11 表现出拮抗活性。

重要性:在本文中,我们研究了在常规和有机农业系统中生长的水稻种子内生微生物组成的差异。我们的结果表明,常规农业中细菌多样性更大,而有机农业中真菌多样性更高。此外,我们的研究揭示了种子细菌内生菌抑制三种引起水稻幼苗疫病的真菌病原体生长的能力。这项研究为利用有益的种子微生物内生菌开发一种基于微生物组的新型策略来管理水稻疾病提供了有价值的见解。这种方法有可能提高植物的整体健康水平并提高作物的生产力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/612b86d69ff4/spectrum.03662-23.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/d169eda8c423/spectrum.03662-23.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/52d27b040441/spectrum.03662-23.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/e826fac6d520/spectrum.03662-23.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/3f451dd2556f/spectrum.03662-23.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/612b86d69ff4/spectrum.03662-23.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/d169eda8c423/spectrum.03662-23.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/52d27b040441/spectrum.03662-23.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/e826fac6d520/spectrum.03662-23.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/3f451dd2556f/spectrum.03662-23.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0b/11448069/612b86d69ff4/spectrum.03662-23.f005.jpg

相似文献

[1]
Characterization of differences in seed endophytic microbiome in conventional and organic rice by amplicon-based sequencing and culturing methods.

Microbiol Spectr. 2024-10-3

[2]
Endophytic bacterial communities in ungerminated and germinated seeds of commercial vegetables.

Sci Rep. 2023-11-14

[3]
Heterosis of endophytic microbiomes in hybrid rice varieties improves seed germination.

mSystems. 2024-5-16

[4]
Insights into Endophytic and Rhizospheric Bacteria of Five Sugar Beet Hybrids in Terms of Their Diversity, Plant-Growth Promoting, and Biocontrol Properties.

Microb Ecol. 2023-12-27

[5]
Metabolome-driven microbiome assembly determining the health of ginger crop (Zingiber officinale L. Roscoe) against rhizome rot.

Microbiome. 2024-9-7

[6]
Endophytic fungal community composition and function response to strawberry genotype and disease resistance.

PeerJ. 2025-5-9

[7]
An in Planta Enrichment Route to Identify Bacterial Root Endophytes.

Environ Microbiol Rep. 2025-6

[8]
Agricultural Practices and Environmental Factors Drive Microbial Communities in the Mezcal-Producing Agave angustifolia Haw.

Microb Ecol. 2025-1-30

[9]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[10]
Fusarium antagonism potential and metabolomics analysis of endophytic bacteria isolated from Crotalaria retusa L., a traditional medicinal plant in Côte d'Ivoire.

FEMS Microbiol Lett. 2025-1-10

引用本文的文献

[1]
Insights into quinoa endophytes: core bacterial communities reveal high stability to water stress and genotypic variation.

Environ Microbiome. 2025-2-3

[2]
Unraveling the Role of Contaminants Reshaping the Microflora in Zea mays Seeds from Heavy Metal-Contaminated and Pristine Environment.

Microb Ecol. 2024-10-28

本文引用的文献

[1]
Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling.

ISME Commun. 2021-6-29

[2]
Analysis of seed-associated bacteria and fungi on staple crops using the cultivation and metagenomic approaches.

Folia Microbiol (Praha). 2022-6

[3]
Monitoring and Surveillance of Aerial Mycobiota of Rice Paddy through DNA Metabarcoding and qPCR.

J Fungi (Basel). 2020-12-17

[4]
Sterile White Basidiomycete Fungus : A New Pathogen Causing Seedling Blight in Rice.

Plant Dis. 2020-10-6

[5]
Fungal mycelia and bacterial thiamine establish a mutualistic growth mechanism.

Life Sci Alliance. 2020-12

[6]
Combined Use of PGPRs and Reduced Rates of Azoxystrobin to Improve Management of Sheath Blight of Rice.

Plant Dis. 2021-4

[7]
Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani.

J Basic Microbiol. 2019-12-18

[8]
Biocontrol of Induction of the Defense Mechanism and Antimicrobial Compounds Produced by SL-44 on Pepper ( L.).

Front Microbiol. 2019-11-28

[9]
Conventional and organic soil management as divergent drivers of resident and active fractions of major soil food web constituents.

Sci Rep. 2019-9-18

[10]
Microbial Diversity and Antimicrobial Resistance Profile in Microbiota From Soils of Conventional and Organic Farming Systems.

Front Microbiol. 2019-4-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索