Suppr超能文献

通过DNA宏条形码和定量PCR对稻田空气真菌区系进行监测和 surveillance(原文中“Surveillance”未翻译完整,此处应是“监测”的意思)

Monitoring and Surveillance of Aerial Mycobiota of Rice Paddy through DNA Metabarcoding and qPCR.

作者信息

Franco Ortega Sara, Ferrocino Ilario, Adams Ian, Silvestri Simone, Spadaro Davide, Gullino Maria Lodovica, Boonham Neil

机构信息

Centre of Competence for the Innovation in the Agro-Environmental Sector-AGROINNOVA, University of Turin, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.

Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.

出版信息

J Fungi (Basel). 2020 Dec 17;6(4):372. doi: 10.3390/jof6040372.

Abstract

The airborne mycobiota has been understudied in comparison with the mycobiota present in other agricultural environments. Traditional, culture-based methods allow the study of a small fraction of the organisms present in the atmosphere, thus missing important information. In this study, the aerial mycobiota in a rice paddy has been examined during the cropping season (from June to September 2016) using qPCRs for two important rice pathogens ( and ) and by using DNA metabarcoding of the fungal ITS region. The metabarcoding results demonstrated a higher alpha diversity (Shannon-Wiener diversity index H' and total number of observed species) at the beginning of the trial (June), suggesting a higher level of community complexity, compared with the end of the season. The main taxa identified by HTS analysis showed a shift in their relative abundance that drove the cluster separation as a function of time and temperature. The most abundant OTUs corresponded to genera such as , , or . Changes in the mycobiota composition were clearly dependent on the average air temperature with a potential impact on disease development in rice. In parallel, oligotyping analysis was performed to obtain a sub-OTU identification which revealed the presence of several oligotypes of and with relative abundance changing during monitoring.

摘要

与其他农业环境中的真菌群落相比,空气传播的真菌群落研究较少。传统的基于培养的方法只能研究大气中一小部分生物,从而遗漏了重要信息。在本研究中,在种植季节(2016年6月至9月),利用针对两种重要水稻病原体的定量PCR以及真菌ITS区域的DNA宏条形码技术,对稻田中的空气传播真菌群落进行了检测。宏条形码分析结果表明,与季节末期相比,试验开始时(6月)的α多样性(香农-维纳多样性指数H'和观察到的物种总数)更高,这表明群落复杂性更高。通过高通量测序分析确定的主要分类群显示,它们的相对丰度发生了变化,这种变化推动了聚类分离,使其成为时间和温度的函数。最丰富的操作分类单元对应于如、、或等属。真菌群落组成的变化明显取决于平均气温,这可能对水稻病害发展产生影响。同时,进行了寡型分析以获得亚操作分类单元识别结果,该结果揭示了和的几种寡型的存在,其相对丰度在监测期间发生了变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e199/7766667/a68685c29382/jof-06-00372-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验