文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

时间在潜在因果推断中的普遍性。

The Ubiquity of Time in Latent-cause Inference.

机构信息

Princeton University.

Bryn Mawr College.

出版信息

J Cogn Neurosci. 2024 Nov 1;36(11):2442-2454. doi: 10.1162/jocn_a_02231.


DOI:10.1162/jocn_a_02231
PMID:39136572
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11493367/
Abstract

Humans have an outstanding ability to generalize from past experiences, which requires parsing continuously experienced events into discrete, coherent units, and relating them to similar past experiences. Time is a key element in this process; however, how temporal information is used in generalization remains unclear. Latent-cause inference provides a Bayesian framework for clustering experiences, by building a world model in which related experiences are generated by a shared cause. Here, we examine how temporal information is used in latent-cause inference, using a novel task in which participants see "microbe" stimuli and explicitly report the latent cause ("strain") they infer for each microbe. We show that humans incorporate time in their inference of latent causes, such that recently inferred latent causes are more likely to be inferred again. In particular, a "persistent" model, in which the latent cause inferred for one observation has a fixed probability of continuing to cause the next observation, explains the data significantly better than two other time-sensitive models, although extensive individual differences exist. We show that our task and this model have good psychometric properties, highlighting their potential use for quantifying individual differences in computational psychiatry or in neuroimaging studies.

摘要

人类具有从过去经验中进行概括的出色能力,这需要将不断经历的事件解析为离散、连贯的单元,并将它们与类似的过去经验联系起来。时间是这个过程的关键要素;然而,在概括中如何使用时间信息仍然不清楚。潜在原因推断为聚类经验提供了一个贝叶斯框架,通过构建一个世界模型,其中相关经验是由共同的原因产生的。在这里,我们使用一种新的任务来检查时间信息如何在潜在原因推断中被使用,在这种任务中,参与者看到“微生物”刺激,并明确报告他们推断出的每个微生物的潜在原因(“菌株”)。我们表明,人类在推断潜在原因时会考虑时间,例如,最近推断出的潜在原因再次被推断的可能性更高。特别是,一个“持久”模型,其中一个观察结果推断出的潜在原因继续导致下一个观察结果的固定概率,比其他两个对时间敏感的模型更能解释数据,尽管存在广泛的个体差异。我们表明,我们的任务和这个模型具有良好的心理计量学特性,突出了它们在计算精神病学或神经影像学研究中量化个体差异方面的潜在用途。

相似文献

[1]
The Ubiquity of Time in Latent-cause Inference.

J Cogn Neurosci. 2024-11-1

[2]
Selective sampling and inductive inference: Drawing inferences based on observed and missing evidence.

Cogn Psychol. 2019-6-11

[3]
Moving beyond qualitative evaluations of Bayesian models of cognition.

Psychon Bull Rev. 2015-6

[4]
Exploring a latent cause theory of classical conditioning.

Learn Behav. 2012-9

[5]
Neural Correlates of Causal Confounding.

J Cogn Neurosci. 2020-2

[6]
The generalization of prior uncertainty during reaching.

J Neurosci. 2014-8-20

[7]
Subjective randomness as statistical inference.

Cogn Psychol. 2018-6

[8]
Explaining compound generalization in associative and causal learning through rational principles of dimensional generalization.

Psychol Rev. 2014-7

[9]
Point-estimating observer models for latent cause detection.

PLoS Comput Biol. 2021-10

[10]
Reconciling shared versus context-specific information in a neural network model of latent causes.

Sci Rep. 2024-7-22

引用本文的文献

[1]
Free recall is shaped by inference and scaffolded by event structure.

Commun Psychol. 2025-4-26

本文引用的文献

[1]
Latent-state and model-based learning in PTSD.

Trends Neurosci. 2024-2

[2]
Goal Choices Modify Frontotemporal Memory Representations.

J Neurosci. 2023-5-3

[3]
Attentional fluctuations and the temporal organization of memory.

Cognition. 2023-6

[4]
Tracking human skill learning with a hierarchical Bayesian sequence model.

PLoS Comput Biol. 2022-11

[5]
A generalized cortical activity pattern at internally generated mental context boundaries during unguided narrative recall.

Elife. 2022-5-30

[6]
Adaptive learning is structure learning in time.

Neurosci Biobehav Rev. 2021-9

[7]
Human Representation Learning.

Annu Rev Neurosci. 2021-7-8

[8]
Reward prediction errors create event boundaries in memory.

Cognition. 2020-10

[9]
Structuring Memory Through Inference-Based Event Segmentation.

Top Cogn Sci. 2021-1

[10]
Structured Event Memory: A neuro-symbolic model of event cognition.

Psychol Rev. 2020-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索