Suppr超能文献

时间在潜在因果推断中的普遍性。

The Ubiquity of Time in Latent-cause Inference.

机构信息

Princeton University.

Bryn Mawr College.

出版信息

J Cogn Neurosci. 2024 Nov 1;36(11):2442-2454. doi: 10.1162/jocn_a_02231.

Abstract

Humans have an outstanding ability to generalize from past experiences, which requires parsing continuously experienced events into discrete, coherent units, and relating them to similar past experiences. Time is a key element in this process; however, how temporal information is used in generalization remains unclear. Latent-cause inference provides a Bayesian framework for clustering experiences, by building a world model in which related experiences are generated by a shared cause. Here, we examine how temporal information is used in latent-cause inference, using a novel task in which participants see "microbe" stimuli and explicitly report the latent cause ("strain") they infer for each microbe. We show that humans incorporate time in their inference of latent causes, such that recently inferred latent causes are more likely to be inferred again. In particular, a "persistent" model, in which the latent cause inferred for one observation has a fixed probability of continuing to cause the next observation, explains the data significantly better than two other time-sensitive models, although extensive individual differences exist. We show that our task and this model have good psychometric properties, highlighting their potential use for quantifying individual differences in computational psychiatry or in neuroimaging studies.

摘要

人类具有从过去经验中进行概括的出色能力,这需要将不断经历的事件解析为离散、连贯的单元,并将它们与类似的过去经验联系起来。时间是这个过程的关键要素;然而,在概括中如何使用时间信息仍然不清楚。潜在原因推断为聚类经验提供了一个贝叶斯框架,通过构建一个世界模型,其中相关经验是由共同的原因产生的。在这里,我们使用一种新的任务来检查时间信息如何在潜在原因推断中被使用,在这种任务中,参与者看到“微生物”刺激,并明确报告他们推断出的每个微生物的潜在原因(“菌株”)。我们表明,人类在推断潜在原因时会考虑时间,例如,最近推断出的潜在原因再次被推断的可能性更高。特别是,一个“持久”模型,其中一个观察结果推断出的潜在原因继续导致下一个观察结果的固定概率,比其他两个对时间敏感的模型更能解释数据,尽管存在广泛的个体差异。我们表明,我们的任务和这个模型具有良好的心理计量学特性,突出了它们在计算精神病学或神经影像学研究中量化个体差异方面的潜在用途。

相似文献

1
The Ubiquity of Time in Latent-cause Inference.时间在潜在因果推断中的普遍性。
J Cogn Neurosci. 2024 Nov 1;36(11):2442-2454. doi: 10.1162/jocn_a_02231.
5
Neural Correlates of Causal Confounding.因果混淆的神经关联。
J Cogn Neurosci. 2020 Feb;32(2):301-314. doi: 10.1162/jocn_a_01479. Epub 2019 Oct 16.
6
The generalization of prior uncertainty during reaching.伸手过程中先验不确定性的泛化。
J Neurosci. 2014 Aug 20;34(34):11470-84. doi: 10.1523/JNEUROSCI.3882-13.2014.
7
Subjective randomness as statistical inference.作为统计推断的主观随机性。
Cogn Psychol. 2018 Jun;103:85-109. doi: 10.1016/j.cogpsych.2018.02.003. Epub 2018 Mar 23.
9
Point-estimating observer models for latent cause detection.用于潜在原因检测的点估计观测器模型。
PLoS Comput Biol. 2021 Oct 29;17(10):e1009159. doi: 10.1371/journal.pcbi.1009159. eCollection 2021 Oct.

引用本文的文献

本文引用的文献

1
Latent-state and model-based learning in PTSD.创伤后应激障碍中的潜在状态和基于模型的学习
Trends Neurosci. 2024 Feb;47(2):150-162. doi: 10.1016/j.tins.2023.12.002. Epub 2024 Jan 11.
2
Goal Choices Modify Frontotemporal Memory Representations.目标选择改变额颞叶记忆表征。
J Neurosci. 2023 May 3;43(18):3353-3364. doi: 10.1523/JNEUROSCI.1939-22.2023. Epub 2023 Mar 28.
3
Attentional fluctuations and the temporal organization of memory.注意波动与记忆的时间组织
Cognition. 2023 Jun;235:105408. doi: 10.1016/j.cognition.2023.105408. Epub 2023 Mar 7.
4
Tracking human skill learning with a hierarchical Bayesian sequence model.用分层贝叶斯序列模型追踪人类技能学习。
PLoS Comput Biol. 2022 Nov 30;18(11):e1009866. doi: 10.1371/journal.pcbi.1009866. eCollection 2022 Nov.
6
Adaptive learning is structure learning in time.自适应学习是时间上的结构学习。
Neurosci Biobehav Rev. 2021 Sep;128:270-281. doi: 10.1016/j.neubiorev.2021.06.024. Epub 2021 Jun 16.
7
Human Representation Learning.人类表示学习。
Annu Rev Neurosci. 2021 Jul 8;44:253-273. doi: 10.1146/annurev-neuro-092920-120559. Epub 2021 Mar 17.
8
Reward prediction errors create event boundaries in memory.奖励预测误差在记忆中创建事件边界。
Cognition. 2020 Oct;203:104269. doi: 10.1016/j.cognition.2020.104269. Epub 2020 Jun 17.
9
Structuring Memory Through Inference-Based Event Segmentation.通过基于推理的事件分割来构建记忆。
Top Cogn Sci. 2021 Jan;13(1):106-127. doi: 10.1111/tops.12505. Epub 2020 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验