Princeton University.
Bryn Mawr College.
J Cogn Neurosci. 2024 Nov 1;36(11):2442-2454. doi: 10.1162/jocn_a_02231.
Humans have an outstanding ability to generalize from past experiences, which requires parsing continuously experienced events into discrete, coherent units, and relating them to similar past experiences. Time is a key element in this process; however, how temporal information is used in generalization remains unclear. Latent-cause inference provides a Bayesian framework for clustering experiences, by building a world model in which related experiences are generated by a shared cause. Here, we examine how temporal information is used in latent-cause inference, using a novel task in which participants see "microbe" stimuli and explicitly report the latent cause ("strain") they infer for each microbe. We show that humans incorporate time in their inference of latent causes, such that recently inferred latent causes are more likely to be inferred again. In particular, a "persistent" model, in which the latent cause inferred for one observation has a fixed probability of continuing to cause the next observation, explains the data significantly better than two other time-sensitive models, although extensive individual differences exist. We show that our task and this model have good psychometric properties, highlighting their potential use for quantifying individual differences in computational psychiatry or in neuroimaging studies.
人类具有从过去经验中进行概括的出色能力,这需要将不断经历的事件解析为离散、连贯的单元,并将它们与类似的过去经验联系起来。时间是这个过程的关键要素;然而,在概括中如何使用时间信息仍然不清楚。潜在原因推断为聚类经验提供了一个贝叶斯框架,通过构建一个世界模型,其中相关经验是由共同的原因产生的。在这里,我们使用一种新的任务来检查时间信息如何在潜在原因推断中被使用,在这种任务中,参与者看到“微生物”刺激,并明确报告他们推断出的每个微生物的潜在原因(“菌株”)。我们表明,人类在推断潜在原因时会考虑时间,例如,最近推断出的潜在原因再次被推断的可能性更高。特别是,一个“持久”模型,其中一个观察结果推断出的潜在原因继续导致下一个观察结果的固定概率,比其他两个对时间敏感的模型更能解释数据,尽管存在广泛的个体差异。我们表明,我们的任务和这个模型具有良好的心理计量学特性,突出了它们在计算精神病学或神经影像学研究中量化个体差异方面的潜在用途。
J Cogn Neurosci. 2024-11-1
Psychon Bull Rev. 2015-6
Learn Behav. 2012-9
J Cogn Neurosci. 2020-2
J Neurosci. 2014-8-20
Cogn Psychol. 2018-6
PLoS Comput Biol. 2021-10
Commun Psychol. 2025-4-26
Trends Neurosci. 2024-2
J Neurosci. 2023-5-3
Cognition. 2023-6
PLoS Comput Biol. 2022-11
Neurosci Biobehav Rev. 2021-9
Annu Rev Neurosci. 2021-7-8
Cognition. 2020-10
Top Cogn Sci. 2021-1
Psychol Rev. 2020-4