Sun Yi, Xia Wenping, Wei Ran, Dai Zedong, Sun Xilin, Zhu Jie, Song Bin, Wang Hao
Department of Radiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, People's Republic of China.
Department of Radiology, Ningbo Yinzhou No. 2 Hospital, Ningbo, China.
Neurol Ther. 2024 Oct;13(5):1467-1482. doi: 10.1007/s40120-024-00652-3. Epub 2024 Aug 13.
This study evaluates the role of quantitative characteristics of white matter hyperintensities (WMHs) in predicting the 1-year recurrence risk of ischemic stroke.
We conducted a retrospective analysis of 1061 patients with ischemic stroke from January 2018 to April 2021. WMHs were automatically segmented using a cluster-based method to quantify their volume and number of clusters (NoC). Additionally, two radiologists independently rated periventricular and deep WMHs using the Fazekas scale. The cohort was divided into a training set (70%) and a testing set (30%). We employed Cox proportional hazards models to develop predictors based on quantitative WMH characteristics, Fazekas scores, and clinical factors, and compared their performance using the concordance index (C-index).
A total of 180 quantitative variables related to WMHs were extracted. A higher NoC in deep white matter and brainstem, advanced age (> 90 years old), specific stroke subtypes, and absence of discharge antiplatelets showed stronger associations with the risk of ischemic stroke recurrence within 1 year. The nomogram incorporating quantitative WMHs data showed superior discrimination compared to those based on the Fazekas scale or clinical factors alone, with C-index values of 0.709 versus 0.647 and 0.648, respectively, in the testing set. Notably, a combined model including both WMHs and clinical factors achieved the highest predictive accuracy, with a C-index of 0.735 in the testing set.
Quantitative assessment of WMHs provides a valuable neuro-imaging tool for enhancing the prediction of ischemic stroke recurrence risk.
本研究评估白质高信号(WMHs)的定量特征在预测缺血性卒中1年复发风险中的作用。
我们对2018年1月至2021年4月期间的1061例缺血性卒中患者进行了回顾性分析。使用基于聚类的方法自动分割WMHs,以量化其体积和聚类数量(NoC)。此外,两名放射科医生使用Fazekas量表对脑室周围和深部WMHs进行独立评分。该队列分为训练集(70%)和测试集(30%)。我们采用Cox比例风险模型,基于WMHs的定量特征、Fazekas评分和临床因素开发预测模型,并使用一致性指数(C-index)比较它们的性能。
共提取了180个与WMHs相关的定量变量。深部白质和脑干中较高的NoC、高龄(>90岁)、特定的卒中亚型以及出院时未使用抗血小板药物与1年内缺血性卒中复发风险的关联更强。纳入WMHs定量数据的列线图显示,与仅基于Fazekas量表或临床因素的列线图相比,具有更好的区分能力,测试集中的C-index值分别为0.709、0.647和0.648。值得注意的是,包括WMHs和临床因素的联合模型实现了最高的预测准确性,测试集中的C-index为0.735。
WMHs的定量评估为提高缺血性卒中复发风险的预测提供了一种有价值的神经影像学工具。