Suppr超能文献

了解细菌多样性、感染动态、预防抗生素耐药性:在阿尔及利亚医院环境中的综合研究。

Understanding bacterial diversity, infection dynamics, prevention of antibiotic resistance: an integrated study in an Algerian hospital context.

机构信息

Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira, 10000, Algeria.

Département de Biologie, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira, 10000, Algeria.

出版信息

Eur J Clin Microbiol Infect Dis. 2024 Nov;43(11):2093-2105. doi: 10.1007/s10096-024-04919-3. Epub 2024 Aug 13.

Abstract

PURPOSE

Bacterial infections, particularly bacteremia, urinary tract infections (UTIs), and pus infections, remain among hospitals' most worrying medical problems. This study aimed to explore bacterial diversity, infection dynamics, and antibiotic resistance profiles of bacterial isolates.

METHODS

We analyzed data from 1750 outpatients and 920 inpatients, of whom 1.6% and 8.47% respectively had various bacterial infections.

RESULTS

The analysis revealed that UTIs were the most prevalent at 41.01%, particularly affecting women. UTIs also showed a distinct distribution across admission departments, notably in emergency (23.07%) and pediatric (14.10%) units. The most frequently isolated microorganisms were Escherichia coli (E. coli), followed by Klebsiella ornithinolytica. Skin infections followed UTIs, accounting for 35.88% of cases, more prevalent in men, with Staphylococcus aureus (S. aureus) being the primary pathogen (57%). Gram-negative bacteria (GNB) like E. coli and Pseudomonas aeruginosa contributed significantly to skin infections (43%). Bacteremia cases constituted 11.52% of bacterial infections, predominantly affecting women (67%) and linked to GNB (78%). A comparative study of antibiotic susceptibility profiles revealed more pronounced resistance in GNB strains isolated from inpatients, particularly to antibiotics such as Amoxicillin/clavulanic acid, Tetracyclin, Gentamicin, Chloramphenicol, and Ampicillin. In contrast, strains from ambulatory patients showed greater resistance to Colistin. Gram-positive bacteria from hospitalized patients showed higher resistance to quinolones and cephalosporins, while ambulatory strains showed high resistance to aminoglycosides, macrolides, fluoroquinolones, and penicillin. Furthermore, these analyses identified the most effective antibiotics for the empirical treatment of both community-acquired and nosocomial infections. Ciprofloxacin, aztreonam, and amikacin exhibited low resistance rates among GNB, with gentamicin and chloramphenicol being particularly effective for community-acquired strains. For S. aureus, ciprofloxacin, rifampicin, and cefoxitin were especially effective, with vancomycin showing high efficacy against community-acquired isolates and fosfomycin and chloramphenicol being effective for hospital-acquired strains.

CONCLUSION

These results are essential for guiding antibiotic therapy and improving clinical outcomes, thus contributing to precision medicine and antimicrobial stewardship efforts.

摘要

目的

细菌感染,特别是菌血症、尿路感染(UTI)和脓肿感染,仍然是医院最令人担忧的医学问题之一。本研究旨在探索细菌多样性、感染动态和细菌分离株的抗生素耐药谱。

方法

我们分析了 1750 名门诊患者和 920 名住院患者的数据,其中分别有 1.6%和 8.47%的患者患有各种细菌感染。

结果

分析显示,UTI 最为常见,占 41.01%,尤其影响女性。UTI 在入院科室也有明显分布,尤其是在急诊(23.07%)和儿科(14.10%)科室。最常分离的微生物是大肠埃希菌(E. coli),其次是 ornithinolytica 肺炎克雷伯菌。皮肤感染紧随 UTI 之后,占 35.88%,男性更为常见,主要病原体是金黄色葡萄球菌(S. aureus)(57%)。革兰氏阴性菌(GNB)如大肠埃希菌和铜绿假单胞菌对皮肤感染的贡献很大(43%)。菌血症病例占细菌感染的 11.52%,主要影响女性(67%),与 GNB(78%)有关。抗生素敏感性分析比较显示,住院患者分离的 GNB 菌株对抗生素的耐药性更为明显,尤其是对阿莫西林/克拉维酸、四环素、庆大霉素、氯霉素和氨苄西林等抗生素。相比之下,门诊患者分离的菌株对粘菌素的耐药性更强。住院患者的革兰氏阳性菌对喹诺酮类和头孢菌素的耐药性较高,而门诊菌株对氨基糖苷类、大环内酯类、氟喹诺酮类和青霉素的耐药性较高。此外,这些分析确定了治疗社区获得性和医院获得性感染的经验性治疗最有效的抗生素。环丙沙星、氨曲南和阿米卡星在 GNB 中表现出较低的耐药率,其中庆大霉素和氯霉素对社区获得性菌株特别有效。对于金黄色葡萄球菌,环丙沙星、利福平、头孢西丁尤其有效,万古霉素对社区获得性分离株具有高疗效,而磷霉素和氯霉素对医院获得性分离株有效。

结论

这些结果对于指导抗生素治疗和改善临床结局至关重要,从而有助于精准医学和抗菌药物管理工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验