Pramanik Subhamay, Li Bo, Driscoll Darren M, Johnson Katherine R, Evans Barbara R, Damron Joshua T, Ivanov Alexander S, Jiang De-En, Einkauf Jeffrey, Popovs Ilja, Jansone-Popova Santa
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.
J Am Chem Soc. 2024 Sep 18;146(37):25669-25679. doi: 10.1021/jacs.4c07332. Epub 2024 Aug 13.
The surging demand for high-purity individual lanthanides necessitates the development of novel and exceptionally selective separation strategies. At the heart of these separation systems is an organic compound that, based on its structural features, selectively recognizes the lighter or heavier lanthanides in the trivalent lanthanide (Ln) series. This work emphasizes the significant implications resulting from modifying the donor group configuration within an N,O-based tetradentate ligand and the changes in the solvation environment of Ln ions in the process of separating Lns, with the unique ability to achieve peak selectivity in the light, medium, and heavy Ln regions. The structural rigidity of the bis-lactam-1,10-phenanthroline ligand enforces size-based selectivity, displaying an exceptional affinity for Lns having larger ionic radii such as La. Modifying the ligand by eliminating one preorganization element (phenanthroline → bipyridine) results in the fast formation of complexes with light Lns, but, in the span of hours, the peak selectivity shifts toward middle Ln (Sm), resulting in time-resolved separation. As expected, at low nitric acid concentrations, the neutral tetradentate ligand complexes with Ln ions. However, the change in extraction mechanism is observed at high nitric acid concentrations, leading to the formation and preferential extraction of anionic heavy Ln species, [Ln(NO)], that self-assemble with two ligands that have undergone protonation, forming intricate supramolecular architectures. The tetradentate ligand that is structurally balanced with restrictive and unrestrictive motifs demonstrates unique, controllable selectivity for light, middle, and heavy Lns, underscoring the pivotal role of solvation and ion interactions within the first and second coordination spheres.
对高纯度单一镧系元素的需求激增,这就需要开发新颖且具有极高选择性的分离策略。这些分离系统的核心是一种有机化合物,基于其结构特征,该化合物能选择性地识别三价镧系(Ln)系列中较轻或较重的镧系元素。这项工作强调了在基于N,O的四齿配体中修饰供体基团构型以及在分离镧系元素过程中镧系离子溶剂化环境变化所产生的重大影响,其具有在轻、中、重镧系区域实现峰值选择性的独特能力。双内酰胺 - 1,10 - 菲咯啉配体的结构刚性增强了基于尺寸的选择性,对诸如La等具有较大离子半径的镧系元素表现出非凡的亲和力。通过去除一个预组织元素(菲咯啉→联吡啶)来修饰配体,会导致与轻镧系元素快速形成配合物,但在数小时内,峰值选择性会向中镧系元素(Sm)转移,从而实现时间分辨分离。正如预期的那样,在低硝酸浓度下,中性四齿配体与镧系离子形成配合物。然而,在高硝酸浓度下观察到萃取机制发生变化,导致形成并优先萃取阴离子重镧系物种[Ln(NO)],该物种与两个质子化的配体自组装,形成复杂的超分子结构。具有限制性和非限制性基序结构平衡的四齿配体对轻、中、重镧系元素表现出独特的、可控的选择性,突出了第一和第二配位球内溶剂化和离子相互作用的关键作用。