Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Department of Neurosurgery, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Second Hospital of Dalian Medical University, Dalian 116027, China.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2406519121. doi: 10.1073/pnas.2406519121. Epub 2024 Aug 13.
In acute promyelocytic leukemia (APL), the promyelocytic leukemia-retinoic acid receptor alpha (PML/RARα) fusion protein destroys PML nuclear bodies (NBs), leading to the formation of microspeckles. However, our understanding, largely learned from morphological observations, lacks insight into the mechanisms behind PML/RARα-mediated microspeckle formation and its role in APL leukemogenesis. This study presents evidence uncovering liquid-liquid phase separation (LLPS) as a key mechanism in the formation of PML/RARα-mediated microspeckles. This process is facilitated by the intrinsically disordered region containing a large portion of PML and a smaller segment of RARα. We demonstrate the coassembly of bromodomain-containing protein 4 (BRD4) within PML/RARα-mediated condensates, differing from wild-type PML-formed NBs. In the absence of PML/RARα, PML NBs and BRD4 puncta exist as two independent phases, but the presence of PML/RARα disrupts PML NBs and redistributes PML and BRD4 into a distinct phase, forming PML/RARα-assembled microspeckles. Genome-wide profiling reveals a PML/RARα-induced BRD4 redistribution across the genome, with preferential binding to super-enhancers and broad-promoters (SEBPs). Mechanistically, BRD4 is recruited by PML/RARα into nuclear condensates, facilitating BRD4 chromatin binding to exert transcriptional activation essential for APL survival. Perturbing LLPS through chemical inhibition (1, 6-hexanediol) significantly reduces chromatin co-occupancy of PML/RARα and BRD4, attenuating their target gene activation. Finally, a series of experimental validations in primary APL patient samples confirm that PML/RARα forms microspeckles through condensates, recruits BRD4 to coassemble condensates, and co-occupies SEBP regions. Our findings elucidate the biophysical, pathological, and transcriptional dynamics of PML/RARα-assembled microspeckles, underscoring the importance of BRD4 in mediating transcriptional activation that enables PML/RARα to initiate APL.
在急性早幼粒细胞白血病(APL)中,早幼粒细胞白血病-维甲酸受体α(PML/RARα)融合蛋白破坏 PML 核体(NBs),导致微斑点的形成。然而,我们的理解主要是从形态学观察中获得的,缺乏对 PML/RARα 介导的微斑点形成机制及其在 APL 白血病发生中的作用的深入了解。本研究提供了证据,揭示液-液相分离(LLPS)是 PML/RARα 介导的微斑点形成的关键机制。这一过程由含有 PML 大部分和 RARα 较小部分的无规卷曲区域促进。我们证明了溴结构域蛋白 4(BRD4)在 PML/RARα 介导的凝聚物中的共组装,与野生型 PML 形成的 NBs 不同。在没有 PML/RARα 的情况下,PML NBs 和 BRD4 斑点存在于两个独立的相中,但 PML/RARα 的存在会破坏 PML NBs,并将 PML 和 BRD4 重新分配到一个不同的相中,形成 PML/RARα 组装的微斑点。全基因组分析显示,PML/RARα 诱导 BRD4 在基因组上的重新分布,优先结合超级增强子和广谱启动子(SEBPs)。在机制上,BRD4 被 PML/RARα 招募到核凝聚物中,促进 BRD4 与染色质结合,发挥对 APL 生存至关重要的转录激活作用。通过化学抑制(1,6-己二醇)干扰 LLPS 会显著降低 PML/RARα 和 BRD4 的染色质共占据,减弱其靶基因的激活。最后,在原发性 APL 患者样本中的一系列实验验证证实,PML/RARα 通过凝聚物形成微斑点,招募 BRD4 共组装凝聚物,并共同占据 SEBP 区域。我们的研究结果阐明了 PML/RARα 组装的微斑点的生物物理、病理学和转录动力学,突出了 BRD4 在介导转录激活中的重要性,使 PML/RARα 能够引发 APL。