Suppr超能文献

双像素雨滴去除

Dual-Pixel Raindrop Removal.

作者信息

Li Yizhou, Monno Yusuke, Okutomi Masatoshi

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10748-10762. doi: 10.1109/TPAMI.2024.3442955. Epub 2024 Nov 6.

Abstract

Removing raindrops in images has been addressed as a significant task for various computer vision applications. In this paper, we propose the first method using a dual-pixel (DP) sensor to better address raindrop removal. Our key observation is that raindrops attached to a glass window yield noticeable disparities in DP's left-half and right-half images, while almost no disparity exists for in-focus backgrounds. Therefore, the DP disparities can be utilized for robust raindrop detection. The DP disparities also bring the advantage that the occluded background regions by raindrops are slightly shifted between the left-half and the right-half images. Therefore, fusing the information from the left-half and the right-half images can lead to more accurate background texture recovery. Based on the above motivation, we propose a DP Raindrop Removal Network (DPRRN) consisting of DP raindrop detection and DP fused raindrop removal. To efficiently generate a large amount of training data, we also propose a novel pipeline to add synthetic raindrops to real-world background DP images. Experimental results on constructed synthetic and real-world datasets demonstrate that our DPRRN outperforms existing state-of-the-art methods, especially showing better robustness to real-world situations.

摘要

去除图像中的雨滴已成为各种计算机视觉应用中的一项重要任务。在本文中,我们提出了第一种使用双像素(DP)传感器来更好地解决雨滴去除问题的方法。我们的关键观察结果是,附着在玻璃窗上的雨滴在DP的左半部分和右半部分图像中会产生明显的视差,而对焦清晰的背景几乎不存在视差。因此,DP视差可用于可靠的雨滴检测。DP视差还具有这样的优势,即雨滴遮挡的背景区域在左半部分和右半部分图像之间会略有偏移。因此,融合左半部分和右半部分图像的信息可以实现更准确的背景纹理恢复。基于上述动机,我们提出了一种双像素雨滴去除网络(DPRRN),它由DP雨滴检测和DP融合雨滴去除组成。为了有效地生成大量训练数据,我们还提出了一种新颖的流程,用于将合成雨滴添加到真实世界的背景DP图像中。在构建的合成数据集和真实世界数据集上的实验结果表明,我们的DPRRN优于现有的最先进方法,特别是在真实世界场景中表现出更好的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验