Suppr超能文献

RVDLAHA:一种用于可穿戴应用中设备端实时癫痫发作检测和个性化的RISC-V DLA硬件架构。

RVDLAHA: An RISC-V DLA Hardware Architecture for On-Device Real-Time Seizure Detection and Personalization in Wearable Applications.

作者信息

Lee Shuenn-Yuh, Ku Ming-Yueh, Tsai Yen-Hsing, Lin Chou-Ching

出版信息

IEEE Trans Biomed Circuits Syst. 2025 Feb;19(1):40-54. doi: 10.1109/TBCAS.2024.3442250. Epub 2025 Feb 11.

Abstract

Epilepsy is a globally distributed chronic neurological disorder that may pose a threat to life without warning. Therefore, the use of wearable devices for real-time detection and treatment of epilepsy is crucial. Additionally, personalizing disease detection algorithms for individual users is also a challenge in clinical applications. Some studies have proposed seizure detection algorithms with convolutional neural networks (CNNs) and programmable hardware architectures for speeding up the process of CNN inference. However, personalizing seizure detection algorithms could still not be performed on these hardware architectures. Consequently, this study proposes three key contributions to address the challenges: a real-time seizure detection and personalization algorithm, a programmable reduced instruction set computer-V (RISC-V) deep learning accelerator (DLA) hardware architecture (RVDLAHA), and a dedicated RISC-V DLA (RVDLA) compiler. In animal experiments with lab rats, the proposed CNN-based seizure detection algorithm obtains an accuracy of 99.5% for a 32-bit floating point and an accuracy of 99.3% for a 16-bit fixed point. Additionally, the proposed personalization algorithm increases the testing accuracy across different databases from 85.0% to 92.9%. The RVDLAHA is implemented on Xilinx PYNQ-Z2, with a power consumption of only 0.107 W at an operating frequency of 1 MHz. Each step, including raw data input, preprocessing, detection, and personalization, requires only 17.8, 1.0, 1.1, and 1.3 ms, respectively. With the hardware architecture, the seizure detection and personalization algorithm can provide on-device real-time monitoring.

摘要

癫痫是一种全球分布的慢性神经系统疾病,可能在毫无预警的情况下对生命构成威胁。因此,使用可穿戴设备进行癫痫的实时检测和治疗至关重要。此外,针对个体用户定制疾病检测算法在临床应用中也是一项挑战。一些研究提出了使用卷积神经网络(CNN)和可编程硬件架构的癫痫发作检测算法,以加速CNN推理过程。然而,这些硬件架构仍无法实现癫痫发作检测算法的个性化。因此,本研究提出了三项关键成果来应对这些挑战:一种实时癫痫发作检测和个性化算法、一种可编程精简指令集计算机-V(RISC-V)深度学习加速器(DLA)硬件架构(RVDLAHA)以及一个专用的RISC-V DLA(RVDLA)编译器。在对实验大鼠进行的动物实验中,所提出的基于CNN的癫痫发作检测算法在32位浮点数情况下的准确率为99.5%,在16位定点数情况下的准确率为99.3%。此外,所提出的个性化算法将不同数据库的测试准确率从85.0%提高到了92.9%。RVDLAHA在赛灵思PYNQ-Z2上实现,在1 MHz的工作频率下功耗仅为0.107 W。包括原始数据输入、预处理、检测和个性化在内的每个步骤分别仅需17.8、1.0、1.1和1.3毫秒。借助该硬件架构,癫痫发作检测和个性化算法可提供设备上的实时监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验