Yan Siyuan, Yu Zhen, Liu Chi, Ju Lie, Mahapatra Dwarikanath, Betz-Stablein Brigid, Mar Victoria, Janda Monika, Soyer Peter, Ge Zongyuan
IEEE Trans Med Imaging. 2025 Jan;44(1):348-360. doi: 10.1109/TMI.2024.3443119. Epub 2025 Jan 2.
Deep learning models for medical image analysis easily suffer from distribution shifts caused by dataset artifact bias, camera variations, differences in the imaging station, etc., leading to unreliable diagnoses in real-world clinical settings. Domain generalization (DG) methods, which aim to train models on multiple domains to perform well on unseen domains, offer a promising direction to solve the problem. However, existing DG methods assume domain labels of each image are available and accurate, which is typically feasible for only a limited number of medical datasets. To address these challenges, we propose a unified DG framework for medical image classification without relying on domain labels, called Prompt-driven Latent Domain Generalization (PLDG). PLDG consists of unsupervised domain discovery and prompt learning. This framework first discovers pseudo domain labels by clustering the bias-associated style features, then leverages collaborative domain prompts to guide a Vision Transformer to learn knowledge from discovered diverse domains. To facilitate cross-domain knowledge learning between different prompts, we introduce a domain prompt generator that enables knowledge sharing between domain prompts and a shared prompt. A domain mixup strategy is additionally employed for more flexible decision margins and mitigates the risk of incorrect domain assignments. Extensive experiments on three medical image classification tasks and one debiasing task demonstrate that our method can achieve comparable or even superior performance than conventional DG algorithms without relying on domain labels. Our code is publicly available at https://github.com/SiyuanYan1/PLDG/tree/main.
用于医学图像分析的深度学习模型很容易受到由数据集伪影偏差、相机变化、成像设备差异等导致的分布偏移影响,从而在实际临床环境中产生不可靠的诊断结果。领域泛化(DG)方法旨在在多个领域上训练模型,使其在未见领域上也能表现良好,为解决这一问题提供了一个有前景的方向。然而,现有的DG方法假设每个图像的领域标签是可用且准确的,这对于仅有限数量的医学数据集来说通常才可行。为应对这些挑战,我们提出了一种用于医学图像分类的统一DG框架,该框架不依赖领域标签,称为提示驱动的潜在领域泛化(PLDG)。PLDG由无监督领域发现和提示学习组成。该框架首先通过对与偏差相关的风格特征进行聚类来发现伪领域标签,然后利用协作领域提示来引导视觉Transformer从发现的不同领域学习知识。为促进不同提示之间的跨领域知识学习,我们引入了一个领域提示生成器,它能够在领域提示和共享提示之间实现知识共享。此外,还采用了一种领域混合策略来获得更灵活的决策边界,并降低错误领域分配的风险。在三个医学图像分类任务和一个去偏任务上进行的大量实验表明,我们的方法在不依赖领域标签的情况下能够取得与传统DG算法相当甚至更优的性能。我们的代码可在https://github.com/SiyuanYan1/PLDG/tree/main上公开获取。