Suppr超能文献

分子链中长度依赖性电离势的非经验预测。

Nonempirical Prediction of the Length-Dependent Ionization Potential in Molecular Chains.

作者信息

Ohad Guy, Hartstein Michal, Gould Tim, Neaton Jeffrey B, Kronik Leeor

机构信息

Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel.

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan QLD 4111, Australia.

出版信息

J Chem Theory Comput. 2024 Aug 13;20(16):7168-75. doi: 10.1021/acs.jctc.4c00847.

Abstract

The ionization potential of molecular chains is well-known to be a tunable nanoscale property that exhibits clear quantum confinement effects. State-of-the-art methods can accurately predict the ionization potential in the small molecule limit and in the solid-state limit, but for intermediate, nanosized systems prediction of the evolution of the electronic structure between the two limits is more difficult. Recently, optimal tuning of range-separated hybrid functionals has emerged as a highly accurate method for predicting ionization potentials. This was first achieved for molecules using the ionization potential theorem (IPT) and more recently extended to solid-state systems, based on an that generalizes the IPT to the removal of charge from a localized Wannier function. Here, we study one-dimensional molecular chains of increasing size, from the monomer limit to the infinite polymer limit using this approach. By comparing our results with other localization-based methods and where available with experiment, we demonstrate that Wannier-localization-based optimal tuning is highly accurate in predicting ionization potentials for any chain length, including the nanoscale regime.

摘要

分子链的电离势是一种众所周知的可调节纳米级特性,表现出明显的量子限制效应。目前最先进的方法能够准确预测小分子极限和固态极限下的电离势,但对于中间的纳米尺寸系统,预测两个极限之间电子结构的演变则更加困难。最近,范围分离混合泛函的优化调谐已成为预测电离势的一种高精度方法。这首先是利用电离势定理(IPT)在分子中实现的,最近又扩展到固态系统,其基础是将IPT推广到从局域化的万尼尔函数中移除电荷。在这里,我们使用这种方法研究从单体极限到无限聚合物极限的尺寸不断增加的一维分子链。通过将我们的结果与其他基于局域化的方法进行比较,并在有实验数据的情况下与实验结果进行比较,我们证明基于万尼尔局域化的优化调谐在预测任何链长(包括纳米尺度范围)的电离势方面都非常准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a82/11360138/9f58b9e721c8/ct4c00847_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验