Su Neil Qiang, Mahler Aaron, Yang Weitao
Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States.
Department of Physics , Duke University , Durham , North Carolina 27708 , United States.
J Phys Chem Lett. 2020 Feb 20;11(4):1528-1535. doi: 10.1021/acs.jpclett.9b03888. Epub 2020 Feb 10.
Symmetry is a fundamental concept that plays a critical role in many chemical and physical phenomena and processes, which highlights the importance of theoretical methods to correctly handle symmetry. The recently developed localized orbital scaling correction (LOSC1) shows great improvement on the description of band gaps, photoemission spectra, and dissociation limits of cationic species. However, issues remain with LOSC1 in dealing with the symmetry and degeneracy of electronic states, which are also relevant to other methods using localization. In this work, we utilize a new method that deals with the physical-space and the energy-space localization on an equal footing. The resulting localized orbitals, i.e., orbitalets, are able to maintain more symmetry and the desired state degeneracy, which is important in calculating the electronic structure of both molecules and periodic bulk systems. Furthermore, the curvature matrix is redefined to improve potential energy curves for systems with stretched bonds, while retaining the correct dissociation limits. This new approach, termed LOSC2, includes only two fitting parameters. It maintains accuracy similar to that of LOSC1 over many properties, while overcoming LOSC1's deficiencies in symmetry and degeneracy. Our tests have shown that LOSC2 orbitalets possess the full- or subgroup of molecular symmetry if allowed, which preserves the state degeneracy. Tests on differently sized planar annulenes, odd-numbered allenes, and triphenylene again verify that LOSC2 is able to maintain the state degeneracy, while LOSC1 cannot. All the tests demonstrate the advantage of LOSC2 in the calculation of molecular systems and its potential for application to periodic bulk systems.
对称性是一个基本概念,在许多化学和物理现象及过程中起着关键作用,这凸显了正确处理对称性的理论方法的重要性。最近开发的局域轨道缩放校正(LOSC1)在描述阳离子物种的带隙、光电子能谱和解离极限方面有了很大改进。然而,LOSC1在处理电子态的对称性和简并性方面仍然存在问题,这些问题在使用局域化的其他方法中也存在。在这项工作中,我们采用了一种新方法,该方法在同等基础上处理物理空间和能量空间的局域化。由此产生的局域轨道,即轨道元,能够保持更多的对称性和所需的态简并性,这在计算分子和周期性体相系统的电子结构时非常重要。此外,重新定义了曲率矩阵,以改善具有拉伸键的系统的势能曲线,同时保留正确的解离极限。这种新方法称为LOSC2,只包含两个拟合参数。它在许多性质上保持了与LOSC1相似的精度,同时克服了LOSC1在对称性和简并性方面的不足。我们的测试表明,如果允许,LOSC2轨道元具有分子对称性的全部或子群,这保持了态简并性。对不同大小的平面轮烯、奇数丙二烯和三亚苯的测试再次验证了LOSC2能够保持态简并性,而LOSC1则不能。所有测试都证明了LOSC2在分子系统计算中的优势及其应用于周期性体相系统的潜力。