College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
School of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
Comput Biol Med. 2024 Sep;180:108980. doi: 10.1016/j.compbiomed.2024.108980. Epub 2024 Aug 12.
Automatic tumor segmentation via positron emission tomography (PET) and computed tomography (CT) images plays a critical role in the prevention, diagnosis, and treatment of this disease via radiation oncology. However, segmenting these tumors is challenging due to the heterogeneity of grayscale levels and fuzzy boundaries. To address these issues, in this paper, an efficient model-informed PET/CT tumor co-segmentation method that combines fuzzy C-means clustering and Bayesian classification information is proposed. To alleviate the grayscale heterogeneity of multi-modal images, in this method, a novel grayscale similar region term is designed based on the background region information of PET and the foreground region information of CT. An edge stop function is innovatively presented to enhance the localization of fuzzy edges by incorporating the fuzzy C-means clustering strategy. To improve the segmentation accuracy further, a unique data fidelity term is introduced based on PET images by combining the distribution characteristics of pixel points in PET images. Finally, experimental validation on datasets of head and neck tumor (HECKTOR) and non-small cell lung cancer (NSCLC) demonstrated impressive values for three key evaluation metrics, including DSC, RVD and HD5, achieved impressive values of 0.85, 5.32, and 0.17, respectively. These compelling results indicate that image segmentation methods based on mathematical models exhibit outstanding performance in handling grayscale heterogeneity and fuzzy boundaries in multi-modal images.
通过正电子发射断层扫描(PET)和计算机断层扫描(CT)图像进行自动肿瘤分割,在肿瘤放射治疗中对这种疾病的预防、诊断和治疗起着至关重要的作用。然而,由于灰度级和模糊边界的不均匀性,分割这些肿瘤具有挑战性。针对这些问题,本文提出了一种有效的基于模型的 PET/CT 肿瘤协同分割方法,该方法结合了模糊 C 均值聚类和贝叶斯分类信息。为了减轻多模态图像的灰度不均匀性,在该方法中,根据 PET 的背景区域信息和 CT 的前景区域信息,设计了一种新颖的灰度相似区域项。创新性地提出了边缘停止函数,通过结合模糊 C 均值聚类策略,增强模糊边缘的定位。为了进一步提高分割准确性,根据 PET 图像,通过结合 PET 图像中像素点的分布特征,引入了一个独特的数据保真度项。最后,对头颈部肿瘤(HECKTOR)和非小细胞肺癌(NSCLC)数据集进行的实验验证表明,三个关键评估指标(包括 DSC、RVD 和 HD5)的得分分别达到了 0.85、5.32 和 0.17,取得了令人印象深刻的结果。这些有说服力的结果表明,基于数学模型的图像分割方法在处理多模态图像中的灰度不均匀性和模糊边界方面表现出色。