Farhadi Leila, Fiorenza Shane A, Wijeratne Sithara, Nakos Konstantinos, Yue Yang, Pimm Morgan, Keya Jakia, Verhey Kristen, Subramanian Radhika, Betterton Meredith D
Massachusetts General Hospital and Harvard Medical School.
University of Colorado Boulder.
bioRxiv. 2025 Jul 1:2025.06.28.662138. doi: 10.1101/2025.06.28.662138.
Microtubule-based long-distance transport in eukaryotic cells typically involves the binding of cargo to motors such as highly processive kinesins for unidirectional transport. An open question is whether long-distance transport can occur by mechanisms that do not require specific motor-cargo interactions and high processivity. In addition to conventional cargo such as vesicles, kinesin also shuttles non-motor microtubule-associated proteins (MAPs) to microtubule ends. Computational modeling of a system of a motor and a MAP that do not bind directly with one another unexpectedly revealed the redistribution of the MAP to microtubule plus ends, suggesting an unconventional mode of protein transport. We recapitulated this phenomenon experimentally in a minimal system using a kinesin-1 protein (K401) and PRC1, a non-motor MAP that binds diffusively on microtubules and shows no detectable binding to K401. Single-molecule imaging revealed unidirectional streams of PRC1 molecules over micron distances along microtubules. Our findings suggest that a stoichiometric excess of K401 can act as a unidirectional barrier to PRC1 diffusion. This effectively "shepherds" PRC1 to microtubule plus end without conventional motor-cargo interactions. Remarkably, we found that shepherding occurs with low kinesin processivity. Shepherding by kinesin-1 was also observed with another MAP. These findings reveal a new mechanism of transport for microtubule-bound cargo that does not require high-affinity motor-cargo binding and motor processivity, two principles conventionally invoked for cellular transport.
在真核细胞中,基于微管的长距离运输通常涉及货物与马达蛋白(如高度连续运动的驱动蛋白)结合以进行单向运输。一个悬而未决的问题是,长距离运输是否可以通过不需要特定马达 - 货物相互作用和高连续性的机制发生。除了诸如囊泡等传统货物外,驱动蛋白还将非马达微管相关蛋白(MAPs)转运到微管末端。对一种彼此不直接结合的马达蛋白和一种MAPs组成的系统进行计算建模,意外地揭示了MAPs向微管正端的重新分布,这表明了一种非常规的蛋白质运输模式。我们使用驱动蛋白 -1蛋白(K401)和PRC1(一种非马达MAPs,它在微管上扩散结合且未检测到与K401的结合)在一个最小系统中通过实验重现了这一现象。单分子成像显示PRC1分子沿微管在微米距离上的单向流动。我们的研究结果表明,化学计量过量的K401可以作为PRC1扩散的单向屏障。这有效地将PRC1“引导”到微管正端,而无需传统的马达 - 货物相互作用。值得注意的是,我们发现这种引导在驱动蛋白低连续性的情况下也会发生。用另一种MAPs也观察到了驱动蛋白 -1的引导作用。这些发现揭示了一种微管结合货物运输的新机制,该机制不需要高亲和力马达 - 货物结合和马达连续性,而这两个原则通常被认为是细胞运输所必需的。