State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
Phys Med Biol. 2024 Aug 23;69(17). doi: 10.1088/1361-6560/ad6ed8.
In the quest for enhanced image quality in positron emission tomography (PET) reconstruction, the introduction of time-of-flight (TOF) constraints in TOF-PET reconstruction offers superior signal-to-noise ratio. By employing BGO detectors capable of simultaneously emitting prompt Cerenkov light and scintillation light, this approach combines the high time resolution of prompt photons with the high energy resolution of scintillation light, thereby presenting a promising avenue for acquiring more precise TOF information.In Stage One, we train a raw method capable of predicting TOF information based on coincidence waveform pairs. In Stage Two, the data is categorized into 25 classes based on signal rise time, and the pre-trained raw method is utilized to obtain TOF kernels for each of the 25 classes, thereby generating prior knowledge. Within Stage Three, our proposed deep learning (DL) module, combined with a bias fine-tuning module, utilizes the kernel prior to provide bias compensation values for the data, thereby refining the first-stage outputs and obtaining more accurate TOF predictions.The three-stage network built upon the LED method resulted in improvements of 11.7 ps and 41.8 ps for full width at half maximum (FWHM) and full width at tenth maximum (FWTM), respectively. Optimal performance was achieved with FWHM of 128.2 ps and FWTM of 286.6 ps when CNN and Transformer were utilized in Stages One and Three, respectively. Further enhancements of 2.3 ps and 3.5 ps for FWHM and FWTM were attained through data augmentation methods.This study employs neural networks to compensate for the timing delays in mixed (Cerenkov and scintillation photons) signals, combining multiple timing kernels as prior knowledge with DL models. This integration yields optimal predictive performance, offering a superior solution for TOF-PET research utilizing Cerenkov signals.
在正电子发射断层扫描 (PET) 重建中追求更高的图像质量时,在 TOF-PET 重建中引入飞行时间 (TOF) 约束可提供更高的信噪比。通过使用能够同时发射瞬时契伦科夫光和闪烁光的 BGO 探测器,这种方法结合了瞬时光子的高时间分辨率和闪烁光的高能分辨率,从而为获取更精确的 TOF 信息提供了有前途的途径。在第一阶段,我们训练了一种基于符合波形对预测 TOF 信息的原始方法。在第二阶段,根据信号上升时间将数据分为 25 类,利用预训练的原始方法为 25 类中的每一类获取 TOF 核,从而生成先验知识。在第三阶段,我们提出的深度学习 (DL) 模块与偏置微调模块相结合,利用核先验为数据提供偏置补偿值,从而对第一阶段的输出进行细化,获得更准确的 TOF 预测。基于 LED 方法构建的三阶段网络使全宽半最大值 (FWHM) 和全宽十分之一最大值 (FWTM) 分别提高了 11.7 ps 和 41.8 ps。当在第一阶段和第三阶段分别使用 CNN 和 Transformer 时,最佳性能为 FWHM 为 128.2 ps,FWTM 为 286.6 ps。通过数据增强方法,FWHM 和 FWTM 分别进一步提高了 2.3 ps 和 3.5 ps。本研究使用神经网络来补偿混合(契伦科夫和闪烁光子)信号中的定时延迟,将多个定时核作为先验知识与 DL 模型相结合。这种集成产生了最佳的预测性能,为利用契伦科夫信号的 TOF-PET 研究提供了优越的解决方案。