Suppr超能文献

用于 TOF-PET 中的切伦科夫和闪烁探测器的 SiPM 读出的低功耗高频实现。

Low power implementation of high frequency SiPM readout for Cherenkov and scintillation detectors in TOF-PET.

机构信息

Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.

出版信息

Phys Med Biol. 2022 Sep 26;67(19):195009. doi: 10.1088/1361-6560/ac8963.

Abstract

State-of-the-art (SoA) electronic readout for silicon photomultiplier (SiPM)-based scintillation detectors that demonstrate experimental limits in achievable coincidence time resolution (CTR) leverage low noise, high frequency signal processing to facilitate a single photon time response that is near the limit of the SiPMs architecture. This readout strategy can optimally exploit fast luminescence and prompt photon populations, and promising measurements show detector concepts employing this readout can greatly advance PET detector CTR, relative to SoA in clinical systems. However, the technique employs power hungry components which make the electronics chain impractical for channel-dense time-of-flight (TOF)-PET detectors. We have developed and tested a low noise and high frequency readout circuit which is performant at low power and consists of discrete elements with small footprints, making it feasible for integration into TOF-PET detector prototypes. A 3 × 3 mmBroadcom SiPM with this readout chain exhibited sub-100 ps single photon time resolution at 10 mW of power consumption, with a relatively minor performance degradation to 120 ± 2 ps FWHM at 5 mW. CTR measurements with 3 × 3 × 20 mmLYSO and fast LGSO scintillators demonstrated 127 ± 3 ps and 113 ± 2 ps FWHM at optimal power operation and 133 ± 2 ps and 121 ± 3 ps CTR at 5 mW. BGO crystals 3 × 3 × 20 mmin size show 271 ± 5 ps FWHM CTR (1174 ± 14 ps full-width-at-tenth-maximum (FWTM)) at optimal power dissipation and 289 ± 8 ps (1296 ± 33 ps FWTM) at 5 mW. The compact and low power readout topology that achieves this performance thereby offers a platform to greatly advance PET system CTR and also opportunities to provide high performance TOF-PET at reduced material cost.

摘要

基于硅光电倍增器 (SiPM) 的闪烁探测器的最先进 (SoA) 电子读出技术,在可实现的符合时间分辨率 (CTR) 方面展示了实验极限,利用低噪声、高频信号处理来实现接近 SiPM 架构极限的单光子时间响应。这种读出策略可以最优地利用快速发光和瞬时光子群体,有前景的测量表明,采用这种读出的探测器概念可以极大地提高 PET 探测器的 CTR,相对于临床系统中的 SoA。然而,该技术采用了耗电的组件,使得电子链在通道密集的时间飞行 (TOF)-PET 探测器中不切实际。我们已经开发并测试了一种低噪声和高频读出电路,该电路在低功耗下表现出色,由具有小足迹的分立元件组成,使其能够集成到 TOF-PET 探测器原型中。采用这种读出链的 3×3mmBroadcom SiPM 在 10mW 的功耗下表现出低于 100ps 的单光子时间分辨率,在 5mW 时性能仅略有下降至 120±2ps FWHM。使用 3×3×20mmLYSO 和快速 LGSO 闪烁体进行的 CTR 测量在最佳功率运行时分别实现了 127±3ps 和 113±2ps FWHM,在 5mW 时分别实现了 133±2ps 和 121±3ps CTR。3×3×20mm 尺寸的 BGO 晶体的 CTR 为 271±5ps FWHM(1174±14ps 十分之一最大值全宽(FWTM)),在最佳功耗下实现,在 5mW 时为 289±8ps(1296±33ps FWTM)。实现这种性能的紧凑和低功耗读出拓扑结构从而为极大提高 PET 系统的 CTR 提供了一个平台,并且还为降低材料成本提供了提供高性能 TOF-PET 的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/752f/9855629/83f02305d96c/pmbac8963f1_lr.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验