Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA.
Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands.
Nat Commun. 2024 Aug 13;15(1):6931. doi: 10.1038/s41467-024-51202-2.
Artificial intelligence (AI) algorithms hold the potential to revolutionize radiology. However, a significant portion of the published literature lacks transparency and reproducibility, which hampers sustained progress toward clinical translation. Although several reporting guidelines have been proposed, identifying practical means to address these issues remains challenging. Here, we show the potential of cloud-based infrastructure for implementing and sharing transparent and reproducible AI-based radiology pipelines. We demonstrate end-to-end reproducibility from retrieving cloud-hosted data, through data pre-processing, deep learning inference, and post-processing, to the analysis and reporting of the final results. We successfully implement two distinct use cases, starting from recent literature on AI-based biomarkers for cancer imaging. Using cloud-hosted data and computing, we confirm the findings of these studies and extend the validation to previously unseen data for one of the use cases. Furthermore, we provide the community with transparent and easy-to-extend examples of pipelines impactful for the broader oncology field. Our approach demonstrates the potential of cloud resources for implementing, sharing, and using reproducible and transparent AI pipelines, which can accelerate the translation into clinical solutions.
人工智能(AI)算法有可能彻底改变放射学。然而,已发表文献的很大一部分缺乏透明度和可重复性,这阻碍了向临床转化的持续进展。尽管已经提出了几个报告指南,但确定解决这些问题的实际方法仍然具有挑战性。在这里,我们展示了基于云的基础设施在实现和共享透明且可重复的基于 AI 的放射学管道方面的潜力。我们从检索云托管数据开始,展示了端到端的可重复性,包括数据预处理、深度学习推理和后处理,以及最终结果的分析和报告。我们成功实现了两个不同的用例,从基于 AI 的癌症成像生物标志物的最新文献开始。我们使用云托管的数据和计算,确认了这些研究的发现,并将验证扩展到其中一个用例的先前未见数据。此外,我们为更广泛的肿瘤学领域提供了具有影响力的透明且易于扩展的管道示例。我们的方法展示了云资源在实现、共享和使用可重复和透明的 AI 管道方面的潜力,这可以加速转化为临床解决方案。