From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
Radiographics. 2023 Dec;43(12):e230180. doi: 10.1148/rg.230180.
The remarkable advances of artificial intelligence (AI) technology are revolutionizing established approaches to the acquisition, interpretation, and analysis of biomedical imaging data. Development, validation, and continuous refinement of AI tools requires easy access to large high-quality annotated datasets, which are both representative and diverse. The National Cancer Institute (NCI) Imaging Data Commons (IDC) hosts large and diverse publicly available cancer image data collections. By harmonizing all data based on industry standards and colocalizing it with analysis and exploration resources, the IDC aims to facilitate the development, validation, and clinical translation of AI tools and address the well-documented challenges of establishing reproducible and transparent AI processing pipelines. Balanced use of established commercial products with open-source solutions, interconnected by standard interfaces, provides value and performance, while preserving sufficient agility to address the evolving needs of the research community. Emphasis on the development of tools, use cases to demonstrate the utility of uniform data representation, and cloud-based analysis aim to ease adoption and help define best practices. Integration with other data in the broader NCI Cancer Research Data Commons infrastructure opens opportunities for multiomics studies incorporating imaging data to further empower the research community to accelerate breakthroughs in cancer detection, diagnosis, and treatment. Published under a CC BY 4.0 license.
人工智能 (AI) 技术的显著进步正在彻底改变生物医学成像数据的获取、解释和分析的既定方法。AI 工具的开发、验证和持续改进需要轻松访问大型高质量注释数据集,这些数据集既具有代表性又具有多样性。美国国家癌症研究所 (NCI) 成像数据共享 (IDC) 托管了大型且多样化的公开可用癌症图像数据集。通过基于行业标准对所有数据进行协调,并将其与分析和探索资源进行本地化,IDC 旨在促进 AI 工具的开发、验证和临床转化,并解决建立可重复和透明的 AI 处理管道的有据可查的挑战。通过标准接口互联的成熟商业产品与开源解决方案的平衡使用,提供了价值和性能,同时保持了足够的灵活性,可以满足研究社区不断发展的需求。强调开发工具、使用案例来展示统一数据表示的实用性以及基于云的分析,旨在促进采用并帮助定义最佳实践。与更广泛的 NCI 癌症研究数据共享基础架构中的其他数据的集成,为纳入成像数据的多组学研究开辟了机会,进一步增强了研究社区在癌症检测、诊断和治疗方面取得突破的能力。根据 CC BY 4.0 许可发布。