Yan Xiaoqin, Huang Zhou, Ren Shuliang, Yin Ganmin, Qi Junnan
Institute of Remote Sensing and Geographic Information System, Peking University, Beijing, China.
Beijing Key Lab of Spatial Information Integration & Its Applications, Peking University, Beijing, China.
Sci Data. 2024 Aug 13;11(1):877. doi: 10.1038/s41597-024-03684-4.
High spatio-temporal resolution estimates of electricity consumption are essential for formulating effective energy transition strategies. However, the data availability is limited by complex spatio-temporal heterogeneity and insufficient multi-source feature fusion. To address these issues, this study introduces an innovative downscaling method that combines multi-source data with machine learning and spatial interpolation techniques. The method's accuracy showed significant improvements, with determination coefficients (R) increasing by 30.1% and 33.4% over the baseline model in two evaluation datasets. With this advanced model, we estimated monthly electricity consumption across 1 km x 1 km grid for 280 Chinese cities from 2012 to 2019. Our dataset is highly consistent with officially released electricity consumption of different industries (Pearson correlation coefficients within 0.83 - 0.91). Moreover, our data can reflect the electricity consumption patterns of different urban land uses compared to other datasets. This study bridges a significant gap in fine-grained electricity consumption data, providing a robust foundation for the development of sustainable energy policies.
高时空分辨率的电力消耗估计对于制定有效的能源转型战略至关重要。然而,数据的可用性受到复杂的时空异质性和多源特征融合不足的限制。为了解决这些问题,本研究引入了一种创新的降尺度方法,该方法将多源数据与机器学习和空间插值技术相结合。该方法的准确性有了显著提高,在两个评估数据集中,决定系数(R)比基线模型分别提高了30.1%和33.4%。利用这个先进的模型,我们估算了2012年至2019年中国280个城市1公里×1公里网格的月用电量。我们的数据集与官方发布的不同行业用电量高度一致(皮尔逊相关系数在0.83 - 0.91之间)。此外,与其他数据集相比,我们的数据能够反映不同城市土地利用类型的用电模式。本研究填补了细粒度电力消耗数据方面的重大空白,为可持续能源政策的制定提供了坚实基础。