文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于主动学习的 Hill 分类法对胃食管瓣进行有效的人工智能评估。

Efficient artificial intelligence-based assessment of the gastroesophageal valve with Hill classification through active learning.

机构信息

Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine 2, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany.

Clinic for General Internal Medicine, Gastroenterology, Hepatology and Infectiology, Pneumology, Klinikum Stuttgart-Katharinenhospital, Kriegsbergstr. 60, 70174, Stuttgart, Germany.

出版信息

Sci Rep. 2024 Aug 13;14(1):18825. doi: 10.1038/s41598-024-68866-x.


DOI:10.1038/s41598-024-68866-x
PMID:39138220
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11322637/
Abstract

Standardized assessment of the gastroesophageal valve during endoscopy, attainable via the Hill classification, is important for clinical assessment and therapeutic decision making. The Hill classification is associated with the presence of hiatal hernia (HH), a common endoscopic finding connected to gastro-esophageal reflux disease. A novel efficient medical artificial intelligence (AI) training pipeline using active learning (AL) is designed. We identified 21,970 gastroscopic images as training data and used our AL to train a model for predicting the Hill classification and detecting HH. Performance of the AL and traditionally trained models were evaluated on an external expert-annotated image collection. The AL model achieved accuracy of 76%. A traditionally trained model with 125% more training data achieved 77% accuracy. Furthermore, the AL model achieved higher precision than the traditional one for rare classes, with 0.54 versus 0.39 (p < 0.05) for grade 3 and 0.72 versus 0.61 (p < 0.05) for grade 4. In detecting HH, the AL model achieved 94% accuracy, 0.72 precision and 0.74 recall. Our AL pipeline is more efficient than traditional methods in training AI for endoscopy.

摘要

通过希尔分类法对内镜下胃食管瓣进行标准化评估,对于临床评估和治疗决策至关重要。希尔分类法与食管裂孔疝(HH)的存在相关,HH 是一种常见的内镜发现,与胃食管反流病有关。设计了一种使用主动学习(AL)的新型高效医学人工智能(AI)训练管道。我们确定了 21970 张胃镜图像作为训练数据,并使用我们的 AL 训练了一个用于预测希尔分类和检测 HH 的模型。AL 模型和传统训练模型的性能在外部专家注释的图像集合上进行了评估。AL 模型的准确率为 76%。具有 125%更多训练数据的传统训练模型的准确率为 77%。此外,AL 模型在稀有类别上的精度高于传统模型,对于 3 级的精度为 0.54,对于 4 级的精度为 0.72(p<0.05)。在检测 HH 方面,AL 模型的准确率为 94%,精度为 0.72,召回率为 0.74。与传统方法相比,我们的 AL 管道在训练内镜 AI 方面更高效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aee/11322637/6d5330cbc8a1/41598_2024_68866_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aee/11322637/1f9f948fdc5c/41598_2024_68866_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aee/11322637/5b8addbf2b1e/41598_2024_68866_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aee/11322637/dc04385ba088/41598_2024_68866_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aee/11322637/6d5330cbc8a1/41598_2024_68866_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aee/11322637/1f9f948fdc5c/41598_2024_68866_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aee/11322637/5b8addbf2b1e/41598_2024_68866_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aee/11322637/dc04385ba088/41598_2024_68866_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aee/11322637/6d5330cbc8a1/41598_2024_68866_Fig4_HTML.jpg

相似文献

[1]
Efficient artificial intelligence-based assessment of the gastroesophageal valve with Hill classification through active learning.

Sci Rep. 2024-8-13

[2]
Histopathology of the endoscopic esophagogastric junction in patients with gastroesophageal reflux disease.

Wien Klin Wochenschr. 2008

[3]
Gastroscopy in patients with hiatal hernia with and without gastroesophageal mucosal prolapse.

Folia Med Cracov. 2016

[4]
Clinical and surgical relevance of the progressive phases of intrathoracic migration of the gastroesophageal junction in gastroesophageal reflux disease.

J Thorac Cardiovasc Surg. 1998-8

[5]
Correlation of the Endoscopic Gastroesophageal Flap Valve with Pathologic Reflux.

J Am Coll Surg. 2024-6-1

[6]
Cardiac mucosa at the gastroesophageal junction: An Eastern perspective.

World J Gastroenterol. 2015-8-14

[7]
Using deep learning to assess the function of gastroesophageal flap valve according to the Hill classification system.

Ann Med. 2023

[8]
Gastro-esophageal reflux and hiatus hernia--endoscopy.

Postgrad Med J. 1974-4

[9]
[Hernia hiatal. Detection of gastroesophageal reflux with the telemetric Heidelberg capsule].

Arq Gastroenterol. 1979

[10]
Hiatal hernias in patients with GERD-like symptoms: evaluation of dynamic real-time MRI vs endoscopy.

Eur Radiol. 2019-6-11

引用本文的文献

[1]
Advancing artificial intelligence applicability in endoscopy through source-agnostic camera signal extraction from endoscopic images.

PLoS One. 2025-6-11

[2]
Artificial intelligence in gastroenterology: Ethical and diagnostic challenges in clinical practice.

World J Gastroenterol. 2025-3-14

[3]
Prospective Evaluation of Real-Time Artificial Intelligence for the Hill Classification of the Gastroesophageal Junction.

United European Gastroenterol J. 2025-3

[4]
Hiatal Hernias Revisited-A Systematic Review of Definitions, Classifications, and Applications.

Life (Basel). 2024-9-11

本文引用的文献

[1]
Assisted documentation as a new focus for artificial intelligence in endoscopy: the precedent of reliable withdrawal time and image reporting.

Endoscopy. 2023-12

[2]
Artificial intelligence-based polyp size measurement in gastrointestinal endoscopy using the auxiliary waterjet as a reference.

Endoscopy. 2023-9

[3]
Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011-2022).

Comput Methods Programs Biomed. 2022-11

[4]
Impact of Artificial Intelligence on Colonoscopy Surveillance After Polyp Removal: A Pooled Analysis of Randomized Trials.

Clin Gastroenterol Hepatol. 2023-4

[5]
A deep learning network based on multi-scale and attention for the diagnosis of chronic atrophic gastritis.

Z Gastroenterol. 2022-12

[6]
The Hill's Classification Is Useful to Predict the Development of Postoperative Gastroesophageal Reflux Disease and Erosive Esophagitis After Laparoscopic Sleeve Gastrectomy.

J Gastrointest Surg. 2022-6

[7]
A deep learning-based system for real-time image reporting during esophagogastroduodenoscopy: a multicenter study.

Endoscopy. 2022-8

[8]
Gastric polyp detection in gastroscopic images using deep neural network.

PLoS One. 2021

[9]
A survey on active learning and human-in-the-loop deep learning for medical image analysis.

Med Image Anal. 2021-7

[10]
Severity of GERD and disease progression.

Dis Esophagus. 2021-10-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索