Suppr超能文献

使用机器学习算法研究土地利用土地覆盖变化对地表温度的影响。

Addressing the impact of land use land cover changes on land surface temperature using machine learning algorithms.

作者信息

Ullah Sajid, Qiao Xiuchen, Abbas Mohsin

机构信息

School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Department of Water Resources and Environmental Engineering, Nangarhar University, Jalalabad, Nangarhar, 2600, Afghanistan.

出版信息

Sci Rep. 2024 Aug 13;14(1):18746. doi: 10.1038/s41598-024-68492-7.

Abstract

Over the past two and a half decades, rapid urbanization has led to significant land use and land cover (LULC) changes in Kabul province, Afghanistan. To assess the impact of LULC changes on land surface temperature (LST), Kabul province was divided into four LULC classes applying the Support Vector Machine (SVM) algorithm using the Landsat satellite images from 1998 to 2022. The LST was assessed using Landsat data from the thermal band. The Cellular Automata-Logistic Regression (CA-LR) model was applied to predict the future patterns of LULC and LST for 2034 and 2046. Results showed significant changes in LULC classes, as the built-up areas increased about 9.37%, while the bare soil and vegetation cover decreased 7.20% and 2.35%, respectively, from 1998 to 2022. The analysis of annual LST revealed that built-up areas showed the highest mean LST, followed by bare soil and vegetation. The future simulation results indicate an expected increase in built-up areas to 17.08% and 23.10% by 2034 and 2046, respectively, compared to 11.23% in 2022. Similarly, the simulation results for LST indicated that the area experiencing the highest LST class (≥ 32 °C) is expected to increase to 27.01% and 43.05% by 2034 and 2046, respectively, compared to 11.21% in 2022. The results indicate that LST increases considerably as built-up areas increase and vegetation cover decreases, revealing a direct link between urbanization and rising temperatures.

摘要

在过去二十五年里,快速城市化导致阿富汗喀布尔省的土地利用和土地覆盖(LULC)发生了显著变化。为评估LULC变化对地表温度(LST)的影响,利用1998年至2022年的陆地卫星图像,运用支持向量机(SVM)算法将喀布尔省划分为四个LULC类别。利用热波段的陆地卫星数据评估LST。应用细胞自动机-逻辑回归(CA-LR)模型预测2034年和2046年LULC和LST的未来格局。结果显示,从1998年到2022年,LULC类别发生了显著变化,建成区面积增加了约9.37%,而裸土和植被覆盖面积分别减少了7.20%和2.35%。对年度LST的分析表明,建成区的平均LST最高,其次是裸土和植被。未来模拟结果表明,到2034年和2046年,建成区面积预计将分别增加到17.08%和23.10%,而2022年为11.23%。同样,LST的模拟结果表明,与2022年的11.21%相比,到2034年和2046年,LST最高类别(≥32°C)的面积预计将分别增加到27.01%和43.05%。结果表明,随着建成区面积增加和植被覆盖减少,LST显著上升,揭示了城市化与气温上升之间的直接联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/11322334/724a5750ce64/41598_2024_68492_Fig1_HTML.jpg

相似文献

引用本文的文献

本文引用的文献

8
An overview of statistical learning theory.统计学习理论概述。
IEEE Trans Neural Netw. 1999;10(5):988-99. doi: 10.1109/72.788640.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验