Suppr超能文献

利用谷歌地球引擎和预测模型对城市扩张和土地利用动态进行时空分析。

Spatio-temporal analysis of urban expansion and land use dynamics using google earth engine and predictive models.

作者信息

Zhang Ang, Tariq Aqil, Quddoos Abdul, Naz Iram, Aslam Rana Waqar, Barboza Elgar, Ullah Sajid, Abdullah-Al-Wadud M

机构信息

College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350116, China.

Department of Wildlife, Fisheries and Aquaculture, College of the Forest Resources, Mississippi State University, Starkville, MS, 39762-9690, USA.

出版信息

Sci Rep. 2025 Feb 27;15(1):6993. doi: 10.1038/s41598-025-92034-4.

Abstract

Urban expansion and changes in land use/land cover (LULC) have intensified in recent decades due to human activity, influencing ecological and developmental landscapes. This study investigated historical and projected LULC changes and urban growth patterns in the districts of Multan and Sargodha, Pakistan, using Landsat satellite imagery, cloud computing, and predictive modelling from 1990 to 2030. The analysis of satellite images was grouped into four time periods (1990-2000, 2000-2010, 2010-2020, and 2020-2030). The Google Earth Engine cloud-based platform facilitated the classification of Landsat 5 ETM (1990, 2000, and 2010) and Landsat 8 OLI (2020) images using the Random Forest model. A simulation model integrating Cellular Automata and an Artificial Neural Network Multilayer Perceptron in the MOLUSCE plugin of QGIS was employed to forecast urban growth to 2030. The resulting maps showed consistently high accuracy levels exceeding 92% for both districts across all time periods. The analysis revealed that Multan's built-up area increased from 240.56 km (6.58%) in 1990 to 440.30 km (12.04%) in 2020, while Sargodha experienced more dramatic growth from 730.91 km (12.69%) to 1,029.07 km (17.83%). Vegetation cover remained dominant but showed significant variations, particularly in peri-urban areas. By 2030, Multan's urban area is projected to stabilize at 433.22 km, primarily expanding in the southeastern direction. Sargodha is expected to reach 1,404.97 km, showing more balanced multi-directional growth toward the northeast and north. The study presents an effective analytical method integrating cloud processing, GIS, and change simulation modeling to evaluate urban growth spatiotemporal patterns and LULC changes. This approach successfully identified the main LULC transformations and trends in the study areas while highlighting potential urbanization zones where opportunities exist for developing planned and managed urban settlements.

摘要

近几十年来,由于人类活动,城市扩张以及土地利用/土地覆盖(LULC)变化加剧,影响着生态和发展景观。本研究利用1990年至2030年的陆地卫星图像、云计算和预测模型,调查了巴基斯坦木尔坦和萨戈达地区的LULC历史变化和预测变化以及城市增长模式。卫星图像分析分为四个时间段(1990 - 2000年、2000 - 2010年、2010 - 2020年和2020 - 2030年)。基于谷歌地球引擎的云平台利用随机森林模型对陆地卫星5号增强型专题绘图仪(1990年、2000年和2010年)和陆地卫星8号运营陆地成像仪(2020年)的图像进行分类。在QGIS的MOLUSCE插件中,采用了一种将细胞自动机和人工神经网络多层感知器相结合的模拟模型来预测到2030年的城市增长情况。结果地图显示,两个地区在所有时间段的准确率始终超过92%。分析表明,木尔坦的建成区面积从1990年的240.56平方千米(占6.58%)增加到2020年的440.30平方千米(占12.04%),而萨戈达的增长更为显著,从730.91平方千米(占12.69%)增加到1029.07平方千米(占17.83%)。植被覆盖仍然占主导地位,但呈现出显著变化,特别是在城市周边地区。到2030年,预计木尔坦的城市面积将稳定在433.22平方千米,主要向东南方向扩展。萨戈达预计将达到1404.97平方千米,向东北和北部呈现出更为均衡的多方向增长。该研究提出了一种将云处理、地理信息系统和变化模拟建模相结合的有效分析方法,以评估城市增长的时空模式和LULC变化。这种方法成功识别了研究区域内主要的LULC转变和趋势,同时突出了存在发展规划和管理城市住区机会的潜在城市化区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c3d/11868624/176d1fc3c51b/41598_2025_92034_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验