Diaz-Mateus Maria A, Salgar-Chaparro Silvia J, Tarazona Johanna, Farhat Hanan
WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin Corrosion Centre, Curtin University, Bentley, WA, Australia.
Qatar Environment and Energy Research Institute (QEERI), Doha, Qatar.
Front Microbiol. 2024 Jul 30;15:1438806. doi: 10.3389/fmicb.2024.1438806. eCollection 2024.
Inside oil and gas pipelines, native microbial communities and different solid compounds typically coexist and form mixed deposits. However, interactions between these deposits (primarily consisting of mineral phases) and microorganisms in oil and gas systems remain poorly understood. Here, we investigated the influence of magnetite (FeO), troilite (FeS), and silica (SiO) on the microbial diversity, cell viability, biofilm formation, and EPS composition of an oil-recovered multispecies consortium.
An oilfield-recovered microbial consortium was grown for 2 weeks in separate bioreactors, each containing 10 g of commercially available magnetite (FeO), troilite (FeS), or silica (SiO) at 40°C ± 1°C under a gas atmosphere of 20% CO/80% N
The microbial population formed in troilite significantly differed from those in silica and magnetite, which exhibited significant similarities. The dominant taxa in troilite was the genus, whereas dominated in magnetite and silica. Nevertheless, biofilm formation was lowest on troilite and highest on silica, correlating with the observed cell viability.
The dissolution of troilite followed by the liberation of HS (HS) and Fe into the test solution, along with its larger particle size compared to silica, likely contributed to the observed results. Confocal laser scanning microscopy revealed that the EPS of the biofilm formed in silica was dominated by eDNA, while those in troilite and magnetite primarily contained polysaccharides. Although the mechanisms of this phenomenon could not be determined, these findings are anticipated to be particularly valuable for enhancing MIC mitigation strategies currently used in oil and gas systems.
在石油和天然气管道内部,原生微生物群落和不同的固体化合物通常共存并形成混合沉积物。然而,在石油和天然气系统中,这些沉积物(主要由矿物相组成)与微生物之间的相互作用仍知之甚少。在此,我们研究了磁铁矿(FeO)、硫铁矿(FeS)和二氧化硅(SiO)对一个采油多物种菌群的微生物多样性、细胞活力、生物膜形成和胞外聚合物(EPS)组成的影响。
从油田采集的微生物菌群在单独的生物反应器中培养2周,每个反应器在40°C±1°C、20%CO/80%N的气体氛围下含有10 g市售磁铁矿(FeO)、硫铁矿(FeS)或二氧化硅(SiO)。
硫铁矿中形成的微生物种群与二氧化硅和磁铁矿中的显著不同,而二氧化硅和磁铁矿中的微生物种群表现出显著的相似性。硫铁矿中的优势类群是 属,而在磁铁矿和二氧化硅中 占主导。然而,硫铁矿上的生物膜形成最少,二氧化硅上的生物膜形成最多,这与观察到的细胞活力相关。
硫铁矿的溶解,随后HS(HS)和Fe释放到测试溶液中,以及与二氧化硅相比其更大的粒径,可能导致了观察到的结果。共聚焦激光扫描显微镜显示,二氧化硅中形成的生物膜的EPS以胞外DNA(eDNA)为主,而硫铁矿和磁铁矿中的EPS主要含有多糖。尽管无法确定这一现象的机制,但这些发现预计对加强目前在石油和天然气系统中使用的微生物腐蚀(MIC)缓解策略特别有价值。