Suppr超能文献

基于深度学习的12导联心电图语义分割实现室性早搏的可解释定位

Explainable localization of premature ventricular contraction using deep learning-based semantic segmentation of 12-lead electrocardiogram.

作者信息

Kujime Kota, Seno Hiroshi, Nakajima Kenzaburo, Yamazaki Masatoshi, Sakuma Ichiro, Yamagata Kenichiro, Kusano Kengo, Tomii Naoki

机构信息

Department of Precision Engineering Graduate School of Engineering The University of Tokyo Tokyo Japan.

Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.

出版信息

J Arrhythm. 2024 Jun 21;40(4):948-957. doi: 10.1002/joa3.13096. eCollection 2024 Aug.

Abstract

BACKGROUND

Predicting the origin of premature ventricular contraction (PVC) from the preoperative electrocardiogram (ECG) is important for catheter ablation therapies. We propose an explainable method that localizes PVC origin based on the semantic segmentation result of a 12-lead ECG using a deep neural network, considering suitable diagnosis support for clinical application.

METHODS

The deep learning-based semantic segmentation model was trained using 265 12-lead ECG recordings from 84 patients with frequent PVCs. The model classified each ECG sampling time into four categories: background (BG), sinus rhythm (SR), PVC originating from the left ventricular outflow tract (PVC-L), and PVC originating from the right ventricular outflow tract (PVC-R). Based on the ECG segmentation results, a rule-based algorithm classified ECG recordings into three categories: PVC-L, PVC-R, as well as Neutral, which is a group for the recordings requiring the physician's careful assessment before separating them into PVC-L and PVC-R. The proposed method was evaluated with a public dataset which was used in previous research.

RESULTS

The evaluation of the proposed method achieved neutral rate, accuracy, sensitivity, specificity, F1-score, and area under the curve of 0.098, 0.932, 0.963, 0.882, 0.945, and 0.852 on a private dataset, and 0.284, 0.916, 0.912, 0.930, 0.943, and 0.848 on a public dataset, respectively. These quantitative results indicated that the proposed method outperformed almost all previous studies, although a significant number of recordings resulted in requiring the physician's assessment.

CONCLUSIONS

The feasibility of explainable localization of premature ventricular contraction was demonstrated using deep learning-based semantic segmentation of 12-lead ECG.Clinical trial registration: M26-148-8.

摘要

背景

术前心电图(ECG)预测室性早搏(PVC)的起源对于导管消融治疗很重要。我们提出了一种可解释的方法,该方法基于12导联心电图的语义分割结果,使用深度神经网络定位PVC起源,并考虑对临床应用的适当诊断支持。

方法

基于深度学习的语义分割模型使用来自84例频发PVC患者的265份12导联心电图记录进行训练。该模型将每个心电图采样时间分为四类:背景(BG)、窦性心律(SR)、起源于左心室流出道的PVC(PVC-L)和起源于右心室流出道的PVC(PVC-R)。基于心电图分割结果,一种基于规则的算法将心电图记录分为三类:PVC-L、PVC-R以及中性类别,中性类别是指那些在分为PVC-L和PVC-R之前需要医生仔细评估的记录组。所提出的方法使用先前研究中使用的公共数据集进行评估。

结果

在一个私有数据集上,所提出方法的评估结果为中性率、准确率、灵敏度、特异性、F1分数和曲线下面积分别为0.098、0.932、0.963、0.882、0.945和0.852,在一个公共数据集上分别为0.284、0.916、0.912、0.930、0.943和0.848。这些定量结果表明,尽管有相当数量的记录需要医生评估,但所提出的方法几乎优于所有先前的研究。

结论

使用基于深度学习的12导联心电图语义分割证明了室性早搏可解释定位的可行性。临床试验注册:M26-148-8。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a701/11317653/376c368010ea/JOA3-40-948-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验