Suppr超能文献

用于磁共振引导放疗的0.35T磁共振成像上的影像组学特征的稳健性

Robustness of radiomics features on 0.35 T magnetic resonance imaging for magnetic resonance-guided radiotherapy.

作者信息

Michalet Morgan, Valenzuela Gladis, Debuire Pierre, Riou Olivier, Azria David, Nougaret Stéphanie, Tardieu Marion

机构信息

Institut du Cancer de Montpellier, Fédération Universitaire d'Oncologie-Radiothérapie d'Occitanie Méditerranée (FOROM), INSERM U1194 IRCM, 208 avenue des apothicaires, 34298 Montpellier, France.

IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France.

出版信息

Phys Imaging Radiat Oncol. 2024 Jul 20;31:100613. doi: 10.1016/j.phro.2024.100613. eCollection 2024 Jul.

Abstract

BACKGROUND AND PURPOSE

MR-guided radiotherapy adds the precision of magnetic resonance imaging (MRI) to the therapeutic benefits of a linear accelerator. Prior to each therapeutic session, an MRI generates a significant volume of imaging data ripe for analysis. Radiomics stands at the forefront of medical imaging and oncology research, dedicated to mining quantitative imaging attributes to forge predictive models. However, the robustness of these models is often challenged.

MATERIALS AND METHODS

To assess the robustness of feature extraction, we conducted reproducibility studies using a 0.35 T MR-linac system, employing both a specialized phantom and patient-derived images, focusing on cases of pancreatic cancer. We extracted shape-based, first-order and textural features from patient-derived images and only first-order and textural features from phantom-derived images. The impact of the delay between simulation and first fraction images was also assessed with an equivalence test.

RESULTS

From 107 features evaluated, 58 (54 %) were considered as non-reproducible: 18 were uniformly inconsistent across both phantom and patient images, 9 were specific to phantom-based analysis, and 31 to patient-derived data.

CONCLUSION

Our findings show that a significant proportion of radiomic features extracted from this dual dataset were unreliable. It is essential to discard these non-reproducible elements to refine and enhance radiomic model development, particularly for MR-guided radiotherapy in pancreatic cancer.

摘要

背景与目的

磁共振引导放疗将磁共振成像(MRI)的精确性与直线加速器的治疗优势相结合。在每次治疗前,MRI会生成大量可供分析的成像数据。放射组学处于医学成像和肿瘤学研究的前沿,致力于挖掘定量成像特征以构建预测模型。然而,这些模型的稳健性常常受到挑战。

材料与方法

为评估特征提取的稳健性,我们使用0.35T磁共振直线加速器系统进行了重复性研究,采用了专门的体模和患者来源的图像,重点关注胰腺癌病例。我们从患者来源的图像中提取了基于形状、一阶和纹理特征,从体模来源的图像中仅提取了一阶和纹理特征。还通过等效性检验评估了模拟图像与首次分割图像之间延迟的影响。

结果

在评估的107个特征中,58个(54%)被认为是不可重复的:18个在体模和患者图像中均一致不一致,9个特定于基于体模的分析,31个特定于患者来源的数据。

结论

我们的研究结果表明,从这个双重数据集中提取的相当一部分放射组学特征是不可靠的。必须舍弃这些不可重复的元素,以完善和加强放射组学模型的开发,特别是对于胰腺癌的磁共振引导放疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce0c/11320460/7b54bb00f9a8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验