Wang Jun, Yen Rose, Beck Armen G, Aggarwal Pankaj, Kong May, Hayes Michael, Jabri Salman, Greshock Thomas J, Hettiarachchi Kanaka
Discovery Chemistry, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, California 94080, United States.
Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States.
ACS Med Chem Lett. 2024 Jul 12;15(8):1396-1401. doi: 10.1021/acsmedchemlett.4c00145. eCollection 2024 Aug 8.
We introduce a new workflow that relies heavily on chemical quantitative structure-retention relationship (QSRR) models to accelerate method development for micro/mini-scale high-throughput purification (HTP). This provides faster access to new active pharmaceutical ingredients (APIs) through high-throughput experimentation (HTE). By comparing fingerprint structural similarity (e.g., Tanimoto index) with small training data sets containing a few hundred diverse small molecule antagonists of a lipid metabolizing enzyme, we can predict retention time (RT) of new compounds. Machine learning (ML) helps to identify optimal separation conditions for purification without performing the traditional crude QC step involving ultrahigh performance liquid chromatography (UHPLC) analyses of each compound. This green-chemistry approach with the use of predictive tools reduces cost and significantly shortens the design-make-test (DMT) cycle of new drugs by way of HTE.
我们引入了一种新的工作流程,该流程严重依赖化学定量结构-保留关系(QSRR)模型,以加速微/小型高通量纯化(HTP)的方法开发。这通过高通量实验(HTE)提供了更快获取新活性药物成分(API)的途径。通过将指纹结构相似性(例如,Tanimoto指数)与包含几百种脂质代谢酶不同小分子拮抗剂的小型训练数据集进行比较,我们可以预测新化合物的保留时间(RT)。机器学习(ML)有助于确定纯化的最佳分离条件,而无需执行涉及对每种化合物进行超高效液相色谱(UHPLC)分析的传统粗QC步骤。这种使用预测工具的绿色化学方法通过HTE降低了成本,并显著缩短了新药的设计-制造-测试(DMT)周期。