Suppr超能文献

代谢功能障碍可预测阿尔茨海默病的发生:基于电子病历数据的统计和机器学习分析。

Metabolic dysfunctions predict the development of Alzheimer's disease: Statistical and machine learning analysis of EMR data.

机构信息

Department of Computer Science, University of California, Davis, Sacramento, California, USA.

Department of Public Health Sciences, University of California, Davis, Sacramento, California, USA.

出版信息

Alzheimers Dement. 2024 Oct;20(10):6765-6775. doi: 10.1002/alz.14101. Epub 2024 Aug 14.

Abstract

INTRODUCTION

The incidence of Alzheimer's disease (AD) and obesity rise concomitantly. This study examined whether factors affecting metabolism, race/ethnicity, and sex are associated with AD development.

METHODS

The analyses included patients ≥ 65 years with AD diagnosis in six University of California hospitals between January 2012 and October 2023. The controls were race/ethnicity, sex, and age matched without dementia. Data analyses used the Cox proportional hazards model and machine learning (ML).

RESULTS

Hispanic/Latino and Native Hawaiian/Pacific Islander, but not Black subjects, had increased AD risk compared to White subjects. Non-infectious hepatitis and alcohol abuse were significant hazards, and alcohol abuse had a greater impact on women than men. While underweight increased AD risk, overweight or obesity reduced risk. ML confirmed the importance of metabolic laboratory tests in predicting AD development.

DISCUSSION

The data stress the significance of metabolism in AD development and the need for racial/ethnic- and sex-specific preventive strategies.

HIGHLIGHTS

Hispanics/Latinos and Native Hawaiians/Pacific Islanders show increased hazards of Alzheimer's disease (AD) compared to White subjects. Underweight individuals demonstrate a significantly higher hazard ratio for AD compared to those with normal body mass index. The association between obesity and AD hazard differs among racial groups, with elderly Asian subjects showing increased risk compared to White subjects. Alcohol consumption and non-infectious hepatitis are significant hazards for AD. Machine learning approaches highlight the potential of metabolic panels for AD prediction.

摘要

简介

阿尔茨海默病(AD)的发病率和肥胖率呈同步上升趋势。本研究旨在探讨影响代谢、种族/民族和性别的因素是否与 AD 的发展有关。

方法

该分析纳入了 2012 年 1 月至 2023 年 10 月在加利福尼亚大学六所医院就诊的年龄≥65 岁且被诊断为 AD 的患者。对照组为无痴呆且种族/民族、性别和年龄相匹配的患者。数据分析采用 Cox 比例风险模型和机器学习(ML)。

结果

与白人相比,西班牙裔/拉丁裔和夏威夷原住民/太平洋岛民,而不是黑人,AD 发病风险增加。非传染性肝炎和酒精滥用是显著的危害因素,且酒精滥用对女性的影响大于男性。体重过轻会增加 AD 的发病风险,而超重或肥胖会降低风险。ML 证实了代谢实验室检查在预测 AD 发展中的重要性。

讨论

数据强调了代谢在 AD 发病机制中的重要性,以及制定针对种族/民族和性别特异性的预防策略的必要性。

重点

与白人相比,西班牙裔/拉丁裔和夏威夷原住民/太平洋岛民的 AD 发病风险更高。与正常体重指数相比,体重过轻者的 AD 发病风险比显著更高。肥胖与 AD 发病风险的关联在不同种族群体中存在差异,与白人相比,老年亚裔的风险增加。饮酒和非传染性肝炎是 AD 的显著危害因素。机器学习方法强调了代谢组学在 AD 预测中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/339b/11485292/86d07c859c9c/ALZ-20-6765-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验