Peralta Juan E, Barone Veronica, Melo Juan I, Alcoba Diego R, Massaccesi Gustavo E, Lain Luis, Torre Alicia, Oña Ofelia B
Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, United States.
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Ciudad Universitaria, 1428 Buenos Aires, Argentina.
J Phys Chem A. 2024 Jul 25;128(29):6026-6032. doi: 10.1021/acs.jpca.4c02801. Epub 2024 Jul 10.
We introduce a new method to remove the one-electron self-interaction error in approximate density functional calculations on an orbital-by-orbital basis, as originally proposed by Perdew and Zunger [ , , 5048]. This method is motivated by a recent proposal by Pederson et al. [ , , 121103] to remove self-interaction that employs orbitals derived from the real-space density matrix, known as FLOSIC (Fermi Löwdin orbitals self-interaction correction). However, instead of Fermi Löwdin orbitals, our scheme utilizes columns of the density matrix to determine localized orbitals, like the localization procedure proposed by Fuemmeler et al. [ , , 8572]. The new method, dubbed DOCSIC for density matrix as orbital coefficients self-interaction correction, contrasts with traditional Perdew-Zunger or FLOSIC in that it does not incorporate additional optimization parameters, and, unlike the average density self-interaction correction of Ciofini et al. [ , , 12], it makes use of localized orbitals. Another advantage of DOCSIC is that it can be implemented as a mean-field formalism. We show details of the self-consistent generalized Kohn-Sham implementation, some illustrative results, and we finally highlight its advantages and limitations.
我们引入了一种新方法,用于在逐个轨道的基础上消除近似密度泛函计算中的单电子自相互作用误差,该方法最初由佩德韦和宗格提出[文献引用,文献引用,5048]。此方法的灵感来源于佩德森等人最近提出的[文献引用,文献引用,121103]一种消除自相互作用的提议,该提议采用从实空间密度矩阵导出的轨道,即所谓的FLOSIC(费米 - 洛丁轨道自相互作用校正)。然而,我们的方案并非使用费米 - 洛丁轨道,而是利用密度矩阵的列来确定定域轨道,类似于富梅勒等人提出的[文献引用,文献引用,8572]定域化过程。这种新方法被称为DOCSIC,即密度矩阵作为轨道系数自相互作用校正,它与传统的佩德韦 - 宗格方法或FLOSIC的不同之处在于,它不包含额外的优化参数,并且与乔菲尼等人的[文献引用,文献引用,12]平均密度自相互作用校正不同,它使用定域轨道。DOCSIC的另一个优点是它可以实现为一种平均场形式。我们展示了自洽广义科恩 - 沙姆实现的细节、一些示例结果,并最终强调了其优点和局限性。