Fu Weiwei, Li Yuke, Chen Jiayi, Chen Jingyi, Xi Shibo, Zhang Jia, Wang Lei
Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore.
Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, 138632, Singapore.
Angew Chem Int Ed Engl. 2024 Nov 18;63(47):e202407992. doi: 10.1002/anie.202407992. Epub 2024 Oct 16.
Modifying catalyst surface with small molecular-additives presents a promising avenue for enhancing electrocatalytic performance. However, challenges arise in preserving the molecular-additives and maximizing their tuning effect, particularly at high current densities. Herein, we develop an effective strategy to preserve the molecular-additives on electrode surface by applying a thin protective layer. Taking 4-dimethylaminopyridine (DMAP) as an example of a molecular-additive, the hydrophobic protection layer on top of the DMAP-functionalized Cu-catalyst effectively prevents its leaching during CO electroreduction (COR). Consequently, the confined DMAP molecules substantially promote the CO-to-multicarbon conversion at low overpotentials. For instance, at a potential as low as -0.47 V vs. reversible hydrogen electrode, the DMAP-functionalized Cu exhibits over 80 % selectivity towards multi-carbon products, while the pristine Cu shows only ~35 % selectivity for multi-carbon products. Notably, ethanol appears as the primary product on DMAP-functionalized Cu, with selectivity approaching 50 % at a high current density of 400 mA cm. Detailed kinetic analysis, in situ spectroscopies, and theoretical calculations indicate that DMAP-induced electron accumulations on surface Cu-sites decrease the reaction energy for C-C coupling. Additionally, the interactions between DMAP and oxygenated intermediates facilitate the ethanol formation pathway in COR. Overall, this study showcases an effective strategy to guide future endeavors involving molecular tuning effects.
用小分子添加剂修饰催化剂表面是提高电催化性能的一条有前景的途径。然而,在保存分子添加剂并使其调谐效果最大化方面存在挑战,尤其是在高电流密度下。在此,我们开发了一种有效的策略,通过施加一层薄的保护层来将分子添加剂保存在电极表面。以4-二甲基氨基吡啶(DMAP)作为分子添加剂的示例,在DMAP功能化的Cu催化剂顶部的疏水保护层有效地防止了其在CO电还原(COR)过程中的浸出。因此,受限的DMAP分子在低过电位下极大地促进了CO到多碳的转化。例如,相对于可逆氢电极,在低至-0.47 V的电位下,DMAP功能化的Cu对多碳产物表现出超过80%的选择性,而原始Cu对多碳产物仅表现出约35%的选择性。值得注意的是,乙醇是DMAP功能化Cu上的主要产物,在400 mA cm的高电流密度下选择性接近50%。详细的动力学分析、原位光谱学和理论计算表明,DMAP诱导的表面Cu位点上的电子积累降低了C-C偶联的反应能量。此外,DMAP与含氧中间体之间的相互作用促进了COR中乙醇的形成途径。总体而言,这项研究展示了一种有效的策略,以指导未来涉及分子调谐效应的研究工作。