Suppr超能文献

提高CO电还原制乙烯和乙醇的精度:额外硼催化位点在铜基串联催化剂中的作用。

Enhancing CO Electroreduction Precision to Ethylene and Ethanol: The Role of Additional Boron Catalytic Sites in Cu-Based Tandem Catalysts.

作者信息

Yu Fuqing, Shu Minxing, Zhang Guangyao, Yu Qiming, Wang Hongming

机构信息

College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.

Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China.

出版信息

Adv Sci (Weinh). 2024 Dec;11(46):e2410118. doi: 10.1002/advs.202410118. Epub 2024 Oct 21.

Abstract

The electrocatalytic conversion of carbon dioxide (CO) into valuable multicarbon (C) compounds offers a promising approach to mitigate CO emissions and harness renewable energy. However, achieving precise selectivity for specific C products, such as ethylene and ethanol, remains a formidable challenge. This study shows that incorporating elemental boron (B) into copper (Cu) catalysts provides additional adsorption sites for CO intermediates, enhancing the selectivity of desirable C products. Additionally, using a nickel single-atom catalyst (Ni-SAC) as a CO source increases local CO concentration and reduces the hydrogen evolution reaction. In situ experiments and density functional theory (DFT) calculations reveal that surface-bound boron units adsorb and convert CO more efficiently, promoting ethylene production, while boron within the bulk phase of copper influences charge transfer, facilitating ethanol generation. In a neutral electrolyte, the bias current density for ethylene production using the B-O-Cu2@Ni-SAC0.05 hybrid catalyst exceeded 300 mA cm, and that for ethanol production with B-O-Cu5@Ni-SAC0.2 surpassed 250 mA cm. This study underscores that elemental doping in Cu-based catalysts not only alters charge and crystalline phase arrangements at Cu sites but also provides additional reduction sites for coupling reactions, enabling the efficient synthesis of distinct C products.

摘要

将二氧化碳(CO₂)电催化转化为有价值的多碳(C₂⁺)化合物为减少CO₂排放和利用可再生能源提供了一种很有前景的方法。然而,实现对特定C₂⁺产物(如乙烯和乙醇)的精确选择性仍然是一项艰巨的挑战。这项研究表明,将元素硼(B)引入铜(Cu)催化剂中可为CO中间体提供额外的吸附位点,提高所需C₂⁺产物的选择性。此外,使用镍单原子催化剂(Ni-SAC)作为CO源可提高局部CO浓度并减少析氢反应。原位实验和密度泛函理论(DFT)计算表明,表面结合的硼单元能更有效地吸附和转化CO,促进乙烯生成,而铜体相中的硼影响电荷转移,促进乙醇生成。在中性电解质中,使用B-O-Cu₂@Ni-SAC₀.₀₅混合催化剂生产乙烯的偏置电流密度超过300 mA cm⁻²,使用B-O-Cu₅@Ni-SAC₀.₂生产乙醇的偏置电流密度超过250 mA cm⁻²。这项研究强调,在铜基催化剂中进行元素掺杂不仅会改变铜位点的电荷和晶相排列,还会为偶联反应提供额外的还原位点,从而能够高效合成不同的C₂⁺产物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6e/11633483/d9ba91168702/ADVS-11-2410118-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验