School of Clinical Medicine, Tsinghua University, Beijing, China.
Trauma Medicine Center, Peking University People's Hospital, Beijing, China.
Kardiol Pol. 2024;82(10):941-948. doi: 10.33963/v.phj.101842. Epub 2024 Aug 14.
There are no tools specifically designed to assess mortality risk in patients with atrial fibrillation (AF).
This study aimed to utilize machine learning methods to identify pertinent variables and develop an easily applicable prognostic score to predict 1-year mortality in AF patients.
This study, based on the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database, focused on patients aged 18 years and older with AF. A critical care database from China was the external validation set. The importance of variables from XGBoost guided the development of a logistic model, forming the basis for an AF scoring model.
Records of of 26 365 AF patients were obtained from the MIMIC-IV database. The external validation dataset included 231 AF patients. The CRAMB score (Charlson comorbidity index, readmission, age, metastatic solid tumor, and maximum blood urea nitrogen concentration) outperformed the CCI and CHA2DS2-VASc scores, demonstrating superior predictive value for 1-year mortality. In the test set, the area under the receiver operating characteristic (AUC) for the CRAMB score was 0.765 (95% confidence interval [CI], 0.753-0.776), while in the external validation set, it was 0.582 (95% CI, 0.502-0.657).
The simplicity of the CRAMB score makes it user-friendly, allowing for coverage of a broader and more heterogeneous AF population.
目前尚无专门用于评估心房颤动(AF)患者死亡风险的工具。
本研究旨在利用机器学习方法识别相关变量,并开发一种易于应用的预后评分,以预测 AF 患者的 1 年死亡率。
本研究基于医疗信息监护 IV (MIMIC-IV)数据库,主要纳入年龄≥18 岁的 AF 患者。中国的一个重症监护数据库作为外部验证集。XGBoost 确定的变量重要性指导了逻辑模型的开发,为 AF 评分模型奠定了基础。
从 MIMIC-IV 数据库中获得了 26365 例 AF 患者的记录。外部验证数据集包括 231 例 AF 患者。CRAMB 评分(Charlson 合并症指数、再入院、年龄、转移性实体瘤和最大血尿素氮浓度)优于 CCI 和 CHA2DS2-VASc 评分,对 1 年死亡率具有更好的预测价值。在测试集中,CRAMB 评分的受试者工作特征曲线下面积(AUC)为 0.765(95%置信区间 [CI],0.753-0.776),而在外部验证集中,AUC 为 0.582(95%CI,0.502-0.657)。
CRAMB 评分简单易用,适用于覆盖更广泛和更异质的 AF 人群。