Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
Int J Med Inform. 2024 Nov;191:105585. doi: 10.1016/j.ijmedinf.2024.105585. Epub 2024 Jul 31.
Atrial fibrillation (AF) is common among intensive care unit (ICU) patients and significantly raises the in-hospital mortality rate. Existing scoring systems or models have limited predictive capabilities for AF patients in ICU. Our study developed and validated machine learning models to predict the risk of in-hospital mortality in ICU patients with AF.
Medical Information Mart for Intensive Care (MIMIC)-IV dataset and eICU Collaborative Research Database (eICU-CRD) were analyzed. Among ten classifiers compared, adaptive boosting (AdaBoost) showed better performance in predicting all-cause mortality in AF patients. A compact model with 15 features was developed and validated. Both the all variable and compact models exhibited excellent performance with area under the receiver operating characteristic curves (AUCs) of 1(95%confidence interval [CI]: 1.0-1.0) in the training set. In the MIMIC-IV testing set, the AUCs of the all variable and compact models were 0.978 (95% CI: 0.973-0.982) and 0.977 (95% CI: 0.972-0.982), respectively. In the external validation set, the AUCs of all variable and compact models were 0.825 (95% CI: 0.815-0.834) and 0.807 (95% CI: 0.796-0.817), respectively.
An AdaBoost-based predictive model was subjected to internal and external validation, highlighting its strong predictive capacity for assessing the risk of in-hospital mortality in ICU patients with AF.
房颤(AF)在重症监护病房(ICU)患者中很常见,显著提高了院内死亡率。现有的评分系统或模型对 ICU 中 AF 患者的预测能力有限。我们的研究开发并验证了机器学习模型,以预测 ICU 中 AF 患者的住院死亡率风险。
分析了医疗信息集市用于重症监护(MIMIC-IV)数据集和 eICU 协作研究数据库(eICU-CRD)。在比较的十种分类器中,自适应增强(AdaBoost)在预测 AF 患者全因死亡率方面表现出更好的性能。开发并验证了一个具有 15 个特征的紧凑型模型。全变量和紧凑型模型在训练集中的受试者工作特征曲线下面积(AUC)均为 1(95%置信区间[CI]:1.0-1.0),表现出优异的性能。在 MIMIC-IV 测试集中,全变量和紧凑型模型的 AUC 分别为 0.978(95%CI:0.973-0.982)和 0.977(95%CI:0.972-0.982)。在外部验证集中,全变量和紧凑型模型的 AUC 分别为 0.825(95%CI:0.815-0.834)和 0.807(95%CI:0.796-0.817)。
基于 AdaBoost 的预测模型经过内部和外部验证,突出了其评估 ICU 中 AF 患者住院死亡率风险的强大预测能力。