Université Paris Cité, UFR de Médecine, Paris, France.
Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0088024. doi: 10.1128/aem.00880-24. Epub 2024 Aug 14.
The efficient natural transformation of allows the rapid construction of bacterial mutants in which the genes of interest are interrupted or replaced by antibiotic-resistance cassettes. However, this proved to be a double-edged sword, i.e., although facilitating the genetic characterization of this important human pathogen, it has limited the development of strategies for constructing markerless mutants without antibiotic-resistance markers. In addition, efficient tools for complementation or labeling are also lacking in . In this study, we significantly expand the meningococcal genetic toolbox by developing new and efficient tools for the construction of markerless mutants (using a dual counterselection strategy), genetic complementation (using integrative vectors), and cell labeling (using a self-labeling protein tag). This expanded toolbox paves the way for more in-depth genetic characterization of and might also be useful in other species.IMPORTANCE and are two important human pathogens. Research focusing on these bacteria requires genetic engineering, which is facilitated by their natural ability to undergo transformation. However, the ease of mutant engineering has led the community to neglect the development of more sophisticated tools for gene editing, particularly for . In this study, we have significantly expanded the meningococcal genetic toolbox by developing novel and efficient tools for markerless mutant construction, genetic complementation, and cell tagging. This expanded toolbox paves the way for more in-depth genetic characterization of and might also be useful in other species.
自然转化的高效性使得能够快速构建细菌突变体,其中感兴趣的基因被抗生素抗性盒中断或取代。然而,这被证明是一把双刃剑,即虽然促进了这种重要的人类病原体的遗传特征分析,但它限制了构建无抗生素抗性标记的标记突变体的策略的发展。此外,也缺乏用于互补或标记的有效工具。在这项研究中,我们通过开发用于构建无标记突变体(使用双重反选择策略)、遗传互补(使用整合载体)和细胞标记(使用自我标记蛋白标签)的新的和有效的工具,显著扩展了脑膜炎球菌的遗传工具箱。这个扩展的工具箱为更深入的遗传特征分析铺平了道路,并且在其他 物种中也可能有用。重要性和 是两种重要的人类病原体。针对这些细菌的研究需要基因工程,这得益于它们自然转化的能力。然而,突变体工程的容易性导致了基因编辑的更复杂工具的开发被忽视,特别是对于 。在这项研究中,我们通过开发用于无标记突变体构建、遗传互补和细胞标记的新颖而有效的工具,显著扩展了脑膜炎球菌的遗传工具箱。这个扩展的工具箱为更深入的遗传特征分析铺平了道路,并且在其他 物种中也可能有用。