Suppr超能文献

细菌膜泡胶体性质的表征方法。

Methods for the Characterization of the Colloidal Properties of Bacterial Membrane Vesicles.

机构信息

Department of Mechanical Engineering, Porter School of Earth and Environmental Studies, Tel Aviv University, Tel Aviv, Israel.

Center for the Environmental Implications of Nanotechnology, Department of Civil & Environmental Engineering, Duke University, Durham, NC, USA.

出版信息

Methods Mol Biol. 2024;2843:25-35. doi: 10.1007/978-1-0716-4055-5_3.

Abstract

Bacterial membrane vesicles (BMVs) are extracellular vesicles secreted by either Gram-positive or Gram-negative bacteria. These BMVs typically possess a diameter between 20 and 250 nm. Due to their size, when these BMVs are suspended in another medium, they could be constituents of a colloidal system. It has been hypothesized that investigating BMVs as colloidal particles could help characterize BMV interactions with other environmentally relevant surfaces. Developing a more thorough understanding of BMV interactions with other surfaces would be critical for developing predictive models of their environmental fate. However, this bio-colloidal perspective has been largely overlooked for BMVs, despite the wealth of methods and expertise available to characterize colloidal particles. A particular strength of taking a more colloid-centric approach to BMV characterization is the potential to quantify a particle's attachment efficiency (α). These values describe the likelihood of attachment during particle-particle or particle-surface interactions, especially those interactions which are governed by physicochemical interactions (such as those described by DLVO and xDLVO theory). Elucidating the influence of physical and electrochemical properties on these attachment efficiency values could give insights into the primary factors driving interactions between BMVs and other surfaces. This chapter details methods for the characterization of BMVs as colloids, beginning with size and surface charge (i.e., electrophoretic mobility/zeta potential) measurements. Afterward, this chapter will address experimental design, especially column experiments, targeted for BMV investigation and the determination of α values.

摘要

细菌膜泡(BMVs)是革兰氏阳性或革兰氏阴性细菌分泌的细胞外囊泡。这些 BMVs 的直径通常在 20 至 250nm 之间。由于其尺寸较小,当这些 BMVs 悬浮在另一种介质中时,它们可能是胶体系统的组成部分。有人假设,将 BMVs 作为胶体颗粒进行研究,可以帮助我们了解 BMV 与其他环境相关表面的相互作用。深入了解 BMV 与其他表面的相互作用对于开发其环境命运的预测模型至关重要。然而,尽管有大量的方法和专业知识可用于表征胶体颗粒,但这种生物胶体的观点在很大程度上被忽视了。从更胶体中心的角度来研究 BMV 的特点是具有量化颗粒附着效率(α)的潜力。这些值描述了颗粒在颗粒-颗粒或颗粒-表面相互作用期间附着的可能性,特别是那些受物理化学相互作用(如 DLVO 和 xDLVO 理论所描述的相互作用)控制的相互作用。阐明物理和电化学性质对这些附着效率值的影响,可以深入了解驱动 BMV 与其他表面相互作用的主要因素。本章详细介绍了将 BMV 作为胶体进行表征的方法,首先是测量粒径和表面电荷(即电泳迁移率/ζ 电位)。之后,本章将讨论实验设计,特别是针对 BMV 研究和α值确定的柱实验设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验