Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America.
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America.
PLoS Comput Biol. 2024 Aug 14;20(8):e1012319. doi: 10.1371/journal.pcbi.1012319. eCollection 2024 Aug.
Translocation in protein synthesis entails the efficient and accurate movement of the mRNA-[tRNA]2 substrate through the ribosome after peptide bond formation. An essential conformational change during this process is the swiveling of the small subunit head domain about two rRNA 'hinge' elements. Using iterative selection and molecular dynamics simulations, we derive alternate hinge elements capable of translocation in vitro and in vivo and describe their effects on the conformational trajectory of the EF-G-bound, translocating ribosome. In these alternate conformational pathways, we observe a diversity of swivel kinetics, hinge motions, three-dimensional head domain trajectories and tRNA dynamics. By finding alternate conformational pathways of translocation, we identify motions and intermediates that are essential or malleable in this process. These findings highlight the plasticity of protein synthesis and provide a more thorough understanding of the available sequence and conformational landscape of a central biological process.
蛋白质合成中的转位需要在肽键形成后,有效地将 mRNA-[tRNA]2 底物准确地穿过核糖体。在此过程中,一个重要的构象变化是小亚基头部结构域围绕两个 rRNA“铰链”元件旋转。我们使用迭代选择和分子动力学模拟,推导出能够在体外和体内进行转位的替代铰链元件,并描述它们对 EF-G 结合的、正在转位的核糖体构象轨迹的影响。在这些替代构象途径中,我们观察到不同的旋转动力学、铰链运动、三维头部结构域轨迹和 tRNA 动力学。通过发现转位的替代构象途径,我们确定了该过程中必不可少或可塑的运动和中间产物。这些发现强调了蛋白质合成的可塑性,并为理解这一核心生物过程的可用序列和构象景观提供了更全面的认识。