Suppr超能文献

诱导的错译导致细菌核糖体上底物易位停滞。

Miscoding-induced stalling of substrate translocation on the bacterial ribosome.

机构信息

Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065.

Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065;

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8603-E8610. doi: 10.1073/pnas.1707539114. Epub 2017 Sep 25.

Abstract

Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.

摘要

核糖体沿着信使 RNA(mRNA)模板的定向转运是决定蛋白质合成速度和连续性的关键因素。使用单分子 FRET 对多步易位机制进行成像,导致了这样的假设,即相对于核糖体的底物运动通过相对长寿命的后期中间体来解决,其中肽酰-tRNA 通过小亚基头部结构域在延伸因子 G(GDP)结合核糖体复合物中的可逆、旋转样运动进入小亚基 P 位。与易位受 P 位中肽酰-tRNA 的识别和有效参与限制一致,我们现在表明,肽酰-tRNA 反密码子与 mRNA 密码子之间的碱基配对错配极大地延迟了这个限速的、分子内过程。这种氨酰-tRNA 解码与易位之间的意外关系表明,错误编码抗生素可能通过在 EF-G 催化的易位过程中破坏小亚基 P 位中肽酰-tRNA 的识别来影响蛋白质合成。引人注目的是,我们表明,传统上已知缓解多脯氨酸基序中核糖体停滞的延伸因子 P(EF-P)可以有效地挽救由于错误编码而引起的易位缺陷。这些发现有助于揭示细菌核糖体上底物易位的限速步骤的性质和来源,并表明 EF-P 可以帮助恢复由错误编码引起的翻译延伸停滞。

相似文献

1
Miscoding-induced stalling of substrate translocation on the bacterial ribosome.诱导的错译导致细菌核糖体上底物易位停滞。
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8603-E8610. doi: 10.1073/pnas.1707539114. Epub 2017 Sep 25.
4
Translocation as continuous movement through the ribosome.易位作为通过核糖体的连续移动。
RNA Biol. 2016 Dec;13(12):1197-1203. doi: 10.1080/15476286.2016.1240140. Epub 2016 Nov 1.
7
Distinct functional classes of ram mutations in 16S rRNA.16S rRNA 中 ram 突变的不同功能类别。
RNA. 2014 Apr;20(4):496-504. doi: 10.1261/rna.043331.113. Epub 2014 Feb 26.

引用本文的文献

3
Alternate conformational trajectories in ribosome translocation.核糖体移位中的交替构象轨迹。
PLoS Comput Biol. 2024 Aug 14;20(8):e1012319. doi: 10.1371/journal.pcbi.1012319. eCollection 2024 Aug.
8
Diffusion control in biochemical specificity.生化特异性中的扩散控制。
Biophys J. 2022 Apr 19;121(8):1541-1548. doi: 10.1016/j.bpj.2022.03.005. Epub 2022 Mar 9.
10
Structural basis of early translocation events on the ribosome.核糖体上早期转位事件的结构基础。
Nature. 2021 Jul;595(7869):741-745. doi: 10.1038/s41586-021-03713-x. Epub 2021 Jul 7.

本文引用的文献

6
The quantitative and condition-dependent Escherichia coli proteome.定量且依赖条件的大肠杆菌蛋白质组
Nat Biotechnol. 2016 Jan;34(1):104-10. doi: 10.1038/nbt.3418. Epub 2015 Dec 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验