Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065.
Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065;
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8603-E8610. doi: 10.1073/pnas.1707539114. Epub 2017 Sep 25.
Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.
核糖体沿着信使 RNA(mRNA)模板的定向转运是决定蛋白质合成速度和连续性的关键因素。使用单分子 FRET 对多步易位机制进行成像,导致了这样的假设,即相对于核糖体的底物运动通过相对长寿命的后期中间体来解决,其中肽酰-tRNA 通过小亚基头部结构域在延伸因子 G(GDP)结合核糖体复合物中的可逆、旋转样运动进入小亚基 P 位。与易位受 P 位中肽酰-tRNA 的识别和有效参与限制一致,我们现在表明,肽酰-tRNA 反密码子与 mRNA 密码子之间的碱基配对错配极大地延迟了这个限速的、分子内过程。这种氨酰-tRNA 解码与易位之间的意外关系表明,错误编码抗生素可能通过在 EF-G 催化的易位过程中破坏小亚基 P 位中肽酰-tRNA 的识别来影响蛋白质合成。引人注目的是,我们表明,传统上已知缓解多脯氨酸基序中核糖体停滞的延伸因子 P(EF-P)可以有效地挽救由于错误编码而引起的易位缺陷。这些发现有助于揭示细菌核糖体上底物易位的限速步骤的性质和来源,并表明 EF-P 可以帮助恢复由错误编码引起的翻译延伸停滞。