Suppr超能文献

理解层状矿物在原始蛋白质的出现和保存以及早期生命痕迹检测中的作用。

Understanding the Role of Layered Minerals in the Emergence and Preservation of Proto-Proteins and Detection of Traces of Early Life.

机构信息

School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom.

UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom.

出版信息

Acc Chem Res. 2024 Sep 3;57(17):2453-2463. doi: 10.1021/acs.accounts.4c00173. Epub 2024 Aug 14.

Abstract

ConspectusThe origin of life remains one of the most profound mysteries in science. Over millennia, theories have evolved, yet the question persists: At its core, the study of life's origin offers insights into our place in the universe and the nature of life itself. By delving into the chemical and geological processes that led to life's emergence, scientists gain a deeper understanding of the fundamental principles that govern living systems. This knowledge not only expands our scientific understanding but also has profound implications for fields ranging from astrobiology to synthetic biology.This research employs a multidisciplinary approach, combining a diverse array of techniques, from space missions to wet laboratory experiments to theoretical modeling. Investigations into the formation of the first proto-biomolecules are tailored to explore both the complex molecular processes that underpin life and the geological contexts in which these processes may have occurred. While laboratory experiments are aimed at mimicking the processes of early planets, not every process and sample is attainable. To this end, we demonstrate the use of molecular modeling techniques to complement experimental efforts and extraterrestrial missions. The simulations enable researchers to test hypotheses and explore scenarios that are difficult or impossible to replicate in the laboratory, bridging gaps in our understanding of prebiotic processes across vast time and space scales.Minerals, particularly layered structures like clays and hydrotalcites, play diverse and pivotal roles in the origin of life. They concentrate organic species, catalyze polymerization reactions (such as peptide formation), and provide protective environments for the molecules. Minerals have also been suggested to have acted as primitive genetic materials. Nevertheless, they may lack the ability for long-term information replication. Instead, we suggest that minerals may act as transcribers of information encoded in environmental cyclic phenomena, such as tidal or seasonal changes. We argue that extensive protection of the produced polymer will immobilize it, making it inactive for any further function. Therefore, in order to generate a functional polymer, it is essential that it remains mobile and chemically active. Furthermore, we suggest a route to the identification of pseudobiosignatures, a polymer that was polymerized on the same mineral surface and consequently retained through overprotection.This Account presents a comprehensive evaluation of the current understanding of the role of layered mineral surfaces on life's origin and biosignature preservation. It highlights the complexity of mineral-organic interactions and proposes pathways for proto-biomolecule emergence and methods for identifying and interpreting potential biosignatures. Ultimately, the quest to uncover the origin of life continues to drive scientific exploration and innovation, offering profound insights into the fundamental nature of existence and our place in the universe.

摘要

概述生命的起源仍然是科学中最深刻的奥秘之一。几千年来,理论不断发展,但问题依然存在:生命起源的研究为我们在宇宙中的位置和生命本身的性质提供了深刻的见解。通过深入研究导致生命出现的化学和地质过程,科学家们对控制生命系统的基本原理有了更深入的了解。这一知识不仅扩展了我们的科学理解,而且对从天体生物学到合成生物学等领域都有着深远的影响。这项研究采用了多学科的方法,结合了从太空任务到湿实验室实验再到理论建模等各种技术。对第一批原生物分子形成的研究旨在探索支持生命的复杂分子过程以及这些过程可能发生的地质背景。虽然实验室实验旨在模拟早期行星的过程,但并非每个过程和样本都可以实现。为此,我们展示了如何使用分子建模技术来补充实验工作和外星任务。这些模拟使研究人员能够测试假设并探索在实验室中难以或不可能复制的情况,从而弥合了我们对广阔时间和空间尺度上前生物过程的理解差距。矿物质,特别是层状结构如粘土和水滑石,在生命起源中起着多样化和关键的作用。它们浓缩有机物质,催化聚合反应(如肽形成),并为分子提供保护环境。矿物质也被认为曾是原始遗传物质。然而,它们可能缺乏长期信息复制的能力。相反,我们认为矿物质可能充当环境循环现象(如潮汐或季节性变化)中编码信息的转录器。我们认为,广泛保护产生的聚合物将使其固定,使其无法再发挥任何进一步的功能。因此,为了生成功能性聚合物,它必须保持移动和化学活性。此外,我们提出了一种识别伪生物特征的方法,即在同一矿物表面聚合的聚合物,因此通过过度保护而保留下来。本账户全面评估了目前对层状矿物表面在生命起源和生物特征保存中的作用的理解。它强调了矿物质-有机相互作用的复杂性,并提出了原生生物分子出现的途径以及识别和解释潜在生物特征的方法。最终,揭示生命起源的探索继续推动着科学探索和创新,为存在的基本性质和我们在宇宙中的位置提供了深刻的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09a4/11375777/f021356efaf1/ar4c00173_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验