Zhang Yue, Zhang Woyu, Wang Shaocong, Lin Ning, Yu Yifei, He Yangu, Wang Bo, Jiang Hao, Lin Peng, Xu Xiaoxin, Qi Xiaojuan, Wang Zhongrui, Zhang Xumeng, Shang Dashan, Liu Qi, Cheng Kwang-Ting, Liu Ming
Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, China.
ACCESS - AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China.
Sci Adv. 2024 Aug 16;10(33):eado1058. doi: 10.1126/sciadv.ado1058. Epub 2024 Aug 14.
The brain is dynamic, associative, and efficient. It reconfigures by associating the inputs with past experiences, with fused memory and processing. In contrast, AI models are static, unable to associate inputs with past experiences, and run on digital computers with physically separated memory and processing. We propose a hardware-software co-design, a semantic memory-based dynamic neural network using a memristor. The network associates incoming data with the past experience stored as semantic vectors. The network and the semantic memory are physically implemented on noise-robust ternary memristor-based computing-in-memory (CIM) and content-addressable memory (CAM) circuits, respectively. We validate our co-designs, using a 40-nm memristor macro, on ResNet and PointNet++ for classifying images and three-dimensional points from the MNIST and ModelNet datasets, which achieves not only accuracy on par with software but also a 48.1 and 15.9% reduction in computational budget. Moreover, it delivers a 77.6 and 93.3% reduction in energy consumption.
大脑具有动态性、关联性和高效性。它通过将输入与过去的经验相联系,并融合记忆与处理过程来进行重新配置。相比之下,人工智能模型是静态的,无法将输入与过去的经验相联系,并且在具有物理上分离的内存和处理单元的数字计算机上运行。我们提出了一种硬件 - 软件协同设计,即使用忆阻器的基于语义记忆的动态神经网络。该网络将传入的数据与作为语义向量存储的过去经验相联系。网络和语义记忆分别在基于噪声鲁棒三值忆阻器的内存计算(CIM)和内容可寻址内存(CAM)电路上物理实现。我们使用一个40纳米的忆阻器宏,在ResNet和PointNet++上对来自MNIST和ModelNet数据集的图像和三维点进行分类,验证了我们的协同设计,其不仅实现了与软件相当的准确率,还将计算预算分别降低了48.1%和15.9%。此外,它还将能耗分别降低了77.6%和93.3%。