Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, 100084, Beijing, China.
Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084, Beijing, China.
Nat Commun. 2021 Jan 18;12(1):408. doi: 10.1038/s41467-020-20692-1.
Reservoir computing is a highly efficient network for processing temporal signals due to its low training cost compared to standard recurrent neural networks, and generating rich reservoir states is critical in the hardware implementation. In this work, we report a parallel dynamic memristor-based reservoir computing system by applying a controllable mask process, in which the critical parameters, including state richness, feedback strength and input scaling, can be tuned by changing the mask length and the range of input signal. Our system achieves a low word error rate of 0.4% in the spoken-digit recognition and low normalized root mean square error of 0.046 in the time-series prediction of the Hénon map, which outperforms most existing hardware-based reservoir computing systems and also software-based one in the Hénon map prediction task. Our work could pave the road towards high-efficiency memristor-based reservoir computing systems to handle more complex temporal tasks in the future.
储层计算是一种高效的处理时间信号的网络,因为与标准递归神经网络相比,它的训练成本较低,并且生成丰富的储层状态在硬件实现中至关重要。在这项工作中,我们通过应用可控掩模工艺报告了一种基于平行动态忆阻器的储层计算系统,其中包括状态丰富度、反馈强度和输入比例在内的关键参数可以通过改变掩模长度和输入信号范围进行调整。我们的系统在语音数字识别中实现了低至 0.4%的字错误率,在 Hénon 映射的时间序列预测中实现了低至 0.046 的归一化均方根误差,优于大多数现有的基于硬件的储层计算系统,也优于基于软件的 Hénon 映射预测任务。我们的工作为未来处理更复杂的时间任务的高效基于忆阻器的储层计算系统铺平了道路。